Pytorch-张量的创建

🌈个人主页: 羽晨同学

💫个人格言:"成为自己未来的主人~"

简介:

一个Python深度学习框架,它将数据封装成张量(Tensor)进行处理,Python中的张量就是元素为同一种数据类型的多维矩阵,在Python中,张量以"类"的形式封装起来,对张量的一些运算,处理的方法被封装在类中.

安装:

python 复制代码
pip install torch==2.0.1 -i https://pypi.tuna.tsinghua.edu.cn/simple

张量的创建

张量的基本创建方法

torch.tensor根据指定数据创建张量

torch.Tensor根据形状创建张量,其也可用来创建指定数据的张量

torch.tensor()根据指定数据创建张量

python 复制代码
import torch
import numpy as np
# 1.创建张量标量
data=torch.tensor(10)
print(data)
# 2. numpy 数组,由于data 为float64,下面代码也使用该类型
data=np.random.randn(2,3)
data=torch.tensor(data)
print(data)
# 3.列表,下面代码使用默认元素类型 float32
data=[[10.,20.,30.],[40.,50.,60.]]
data=torch.tensor(data)
print(data)

torch.Tensor()根据指定形状创建张量,也可以用来创建指定数据的张量

python 复制代码
# 1.创建2行3列的张量,默认dtype为float32
data=torch.Tensor(2,3)
print(data)
# 2.注意:如果传递列表,则创建包含指定元素张量
data=torch.Tensor([10])
print(data)
data=torch.Tensor([10,20])
print(data)

创建线性和随机张量

torch.arange和torch.linspace创建线性张量

torch.randn创建随机张量

torch.arange()、torch.linspace()创建线性张量

python 复制代码
# 1. 在指定区间按照步长生成元素【start,end,step】
data=torch.arange(0,10,2)
print(data)
# 2. 在指定区间按照元素个数生成[start,end,num]
data=torch.linspace(0,11,10)
print(data)

torch.randn()创建随机张量

python 复制代码
# 1.创建随机张量
data=torch.randn(2,3) # 创建2行3列张量
print(data)

创建0-1张量

torch.ones 创建全1张量

torch.zeros 创建全0张量

torch.full 创建全为指定值张量

创建全0张量

python 复制代码
# 1.创建指定形状全0张量
data=torch.zeros(2,3)
print(data)

创建全1张量

python 复制代码
# 2.创建全1张量
data=torch.ones(2,3)
print(data)

创建全为指定值张量

python 复制代码
# 3.创建指定形状指定值的张量
data=torch.full([2,3],10)
print(data)

张量的类型转换

data.type(torch.DoubleTensor)

data.double()

data.type(torch.DoubleTensor)

python 复制代码
data=torch.full([2,3],10)
print(data.dtype)
# 将data元素类型转换为float64类型
data=data.type(torch.DoubleTensor)
print(data.dtype)
# 转换成其他类型
data=data.type(torch.IntTensor)
print(data.dtype)
data=data.type(torch.LongTensor)
print(data.dtype)
data=data.type(torch.FloatTensor)
print(data.dtype)

data.double()

python 复制代码
data=torch.full([2,3],10)
print(data.dtype)
# 将data元素类型转换为 float64类型
data=data.double()
print(data.dtype)
# 转换成其他类型
data=data.int()
data=data.long()
data=data.float()
相关推荐
GeeLark几秒前
#请输入你的标签内容
大数据·人工智能·自动化
番茄大王sc1 分钟前
2026年科研AI工具深度测评:文献调研与综述生成领域
论文阅读·人工智能·学习方法·论文笔记
让学习成为一种生活方式4 分钟前
酿酒葡萄VvOMTs基因家族鉴定及启动子功能分析--文献精读201
人工智能
运维小欣8 分钟前
博睿数据:以Agentic AI驱动智能运维未来
运维·人工智能
康康的AI博客30 分钟前
AI大模型API中转站全方位解析
人工智能
深圳博众测控1 小时前
博众测控 | ISO 16750-2:2023汽车电气测试新标准解读:关键变化与测试设备选型
人工智能·测试工具·汽车
Dfreedom.1 小时前
图像灰度处理与二值化
图像处理·人工智能·opencv·计算机视觉
老兵发新帖1 小时前
关于ONNX和pytorch,我们应该怎么做?结合训练和推理
人工智能
方安乐1 小时前
杂记:对齐研究(AI alignment)
人工智能
方见华Richard2 小时前
世毫九《认知几何学修订版:从离散概念网络到认知拓扑动力学》
人工智能·经验分享·交互·原型模式·空间计算