Pytorch-张量的创建

🌈个人主页: 羽晨同学

💫个人格言:"成为自己未来的主人~"

简介:

一个Python深度学习框架,它将数据封装成张量(Tensor)进行处理,Python中的张量就是元素为同一种数据类型的多维矩阵,在Python中,张量以"类"的形式封装起来,对张量的一些运算,处理的方法被封装在类中.

安装:

python 复制代码
pip install torch==2.0.1 -i https://pypi.tuna.tsinghua.edu.cn/simple

张量的创建

张量的基本创建方法

torch.tensor根据指定数据创建张量

torch.Tensor根据形状创建张量,其也可用来创建指定数据的张量

torch.tensor()根据指定数据创建张量

python 复制代码
import torch
import numpy as np
# 1.创建张量标量
data=torch.tensor(10)
print(data)
# 2. numpy 数组,由于data 为float64,下面代码也使用该类型
data=np.random.randn(2,3)
data=torch.tensor(data)
print(data)
# 3.列表,下面代码使用默认元素类型 float32
data=[[10.,20.,30.],[40.,50.,60.]]
data=torch.tensor(data)
print(data)

torch.Tensor()根据指定形状创建张量,也可以用来创建指定数据的张量

python 复制代码
# 1.创建2行3列的张量,默认dtype为float32
data=torch.Tensor(2,3)
print(data)
# 2.注意:如果传递列表,则创建包含指定元素张量
data=torch.Tensor([10])
print(data)
data=torch.Tensor([10,20])
print(data)

创建线性和随机张量

torch.arange和torch.linspace创建线性张量

torch.randn创建随机张量

torch.arange()、torch.linspace()创建线性张量

python 复制代码
# 1. 在指定区间按照步长生成元素【start,end,step】
data=torch.arange(0,10,2)
print(data)
# 2. 在指定区间按照元素个数生成[start,end,num]
data=torch.linspace(0,11,10)
print(data)

torch.randn()创建随机张量

python 复制代码
# 1.创建随机张量
data=torch.randn(2,3) # 创建2行3列张量
print(data)

创建0-1张量

torch.ones 创建全1张量

torch.zeros 创建全0张量

torch.full 创建全为指定值张量

创建全0张量

python 复制代码
# 1.创建指定形状全0张量
data=torch.zeros(2,3)
print(data)

创建全1张量

python 复制代码
# 2.创建全1张量
data=torch.ones(2,3)
print(data)

创建全为指定值张量

python 复制代码
# 3.创建指定形状指定值的张量
data=torch.full([2,3],10)
print(data)

张量的类型转换

data.type(torch.DoubleTensor)

data.double()

data.type(torch.DoubleTensor)

python 复制代码
data=torch.full([2,3],10)
print(data.dtype)
# 将data元素类型转换为float64类型
data=data.type(torch.DoubleTensor)
print(data.dtype)
# 转换成其他类型
data=data.type(torch.IntTensor)
print(data.dtype)
data=data.type(torch.LongTensor)
print(data.dtype)
data=data.type(torch.FloatTensor)
print(data.dtype)

data.double()

python 复制代码
data=torch.full([2,3],10)
print(data.dtype)
# 将data元素类型转换为 float64类型
data=data.double()
print(data.dtype)
# 转换成其他类型
data=data.int()
data=data.long()
data=data.float()
相关推荐
池央21 分钟前
AI性能极致体验:通过阿里云平台高效调用满血版DeepSeek-R1模型
人工智能·阿里云·云计算
我们的五年22 分钟前
DeepSeek 和 ChatGPT 在特定任务中的表现:逻辑推理与创意生成
人工智能·chatgpt·ai作画·deepseek
Yan-英杰23 分钟前
百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
图像处理·人工智能·python·深度学习·deepseek
Fuweizn25 分钟前
富唯智能可重构柔性装配产线:以智能协同赋能制造业升级
人工智能·智能机器人·复合机器人
taoqick2 小时前
对PosWiseFFN的改进: MoE、PKM、UltraMem
人工智能·pytorch·深度学习
suibian52352 小时前
AI时代:前端开发的职业发展路径拓宽
前端·人工智能
预测模型的开发与应用研究3 小时前
数据分析的AI+流程(个人经验)
人工智能·数据挖掘·数据分析
源大模型3 小时前
OS-Genesis:基于逆向任务合成的 GUI 代理轨迹自动化生成
人工智能·gpt·智能体
PowerBI学谦5 小时前
Python in Excel高级分析:一键RFM分析
大数据·人工智能·pandas
运维开发王义杰5 小时前
AI: Unsloth + Llama 3 微调实践,基于Colab
人工智能·llama