Pytorch-张量的创建

🌈个人主页: 羽晨同学

💫个人格言:"成为自己未来的主人~"

简介:

一个Python深度学习框架,它将数据封装成张量(Tensor)进行处理,Python中的张量就是元素为同一种数据类型的多维矩阵,在Python中,张量以"类"的形式封装起来,对张量的一些运算,处理的方法被封装在类中.

安装:

python 复制代码
pip install torch==2.0.1 -i https://pypi.tuna.tsinghua.edu.cn/simple

张量的创建

张量的基本创建方法

torch.tensor根据指定数据创建张量

torch.Tensor根据形状创建张量,其也可用来创建指定数据的张量

torch.tensor()根据指定数据创建张量

python 复制代码
import torch
import numpy as np
# 1.创建张量标量
data=torch.tensor(10)
print(data)
# 2. numpy 数组,由于data 为float64,下面代码也使用该类型
data=np.random.randn(2,3)
data=torch.tensor(data)
print(data)
# 3.列表,下面代码使用默认元素类型 float32
data=[[10.,20.,30.],[40.,50.,60.]]
data=torch.tensor(data)
print(data)

torch.Tensor()根据指定形状创建张量,也可以用来创建指定数据的张量

python 复制代码
# 1.创建2行3列的张量,默认dtype为float32
data=torch.Tensor(2,3)
print(data)
# 2.注意:如果传递列表,则创建包含指定元素张量
data=torch.Tensor([10])
print(data)
data=torch.Tensor([10,20])
print(data)

创建线性和随机张量

torch.arange和torch.linspace创建线性张量

torch.randn创建随机张量

torch.arange()、torch.linspace()创建线性张量

python 复制代码
# 1. 在指定区间按照步长生成元素【start,end,step】
data=torch.arange(0,10,2)
print(data)
# 2. 在指定区间按照元素个数生成[start,end,num]
data=torch.linspace(0,11,10)
print(data)

torch.randn()创建随机张量

python 复制代码
# 1.创建随机张量
data=torch.randn(2,3) # 创建2行3列张量
print(data)

创建0-1张量

torch.ones 创建全1张量

torch.zeros 创建全0张量

torch.full 创建全为指定值张量

创建全0张量

python 复制代码
# 1.创建指定形状全0张量
data=torch.zeros(2,3)
print(data)

创建全1张量

python 复制代码
# 2.创建全1张量
data=torch.ones(2,3)
print(data)

创建全为指定值张量

python 复制代码
# 3.创建指定形状指定值的张量
data=torch.full([2,3],10)
print(data)

张量的类型转换

data.type(torch.DoubleTensor)

data.double()

data.type(torch.DoubleTensor)

python 复制代码
data=torch.full([2,3],10)
print(data.dtype)
# 将data元素类型转换为float64类型
data=data.type(torch.DoubleTensor)
print(data.dtype)
# 转换成其他类型
data=data.type(torch.IntTensor)
print(data.dtype)
data=data.type(torch.LongTensor)
print(data.dtype)
data=data.type(torch.FloatTensor)
print(data.dtype)

data.double()

python 复制代码
data=torch.full([2,3],10)
print(data.dtype)
# 将data元素类型转换为 float64类型
data=data.double()
print(data.dtype)
# 转换成其他类型
data=data.int()
data=data.long()
data=data.float()
相关推荐
AI大模型技术社1 分钟前
✅2025全网最具权威深度解析并手写RAG Pipeline
人工智能·llm·掘金·日新计划
mortimer16 分钟前
Whisper断句不够好?用AI LLM和结构化数据打造完美字幕
人工智能·openai
计算生物前沿1 小时前
单细胞分析教程 | (二)标准化、特征选择、降为、聚类及可视化
人工智能·机器学习·聚类
kyle~1 小时前
Opencv---深度学习开发
人工智能·深度学习·opencv·计算机视觉·机器人
运器1231 小时前
【一起来学AI大模型】PyTorch DataLoader 实战指南
大数据·人工智能·pytorch·python·深度学习·ai·ai编程
超龄超能程序猿2 小时前
(5)机器学习小白入门 YOLOv:数据需求与图像不足应对策略
人工智能·python·机器学习·numpy·pandas·scipy
卷福同学2 小时前
【AI编程】AI+高德MCP不到10分钟搞定上海三日游
人工智能·算法·程序员
帅次2 小时前
系统分析师-计算机系统-输入输出系统
人工智能·分布式·深度学习·神经网络·架构·系统架构·硬件架构
AndrewHZ2 小时前
【图像处理基石】如何入门大规模三维重建?
人工智能·深度学习·大模型·llm·三维重建·立体视觉·大规模三维重建
5G行业应用2 小时前
【赠书福利,回馈公号读者】《智慧城市与智能网联汽车,融合创新发展之路》
人工智能·汽车·智慧城市