3240. 最少翻转次数使二进制矩阵回文 II

Powered by:NEFU AB-IN

Link

文章目录

  • [3240. 最少翻转次数使二进制矩阵回文 II](#3240. 最少翻转次数使二进制矩阵回文 II)

3240. 最少翻转次数使二进制矩阵回文 II

题意

给你一个 m x n 的二进制矩阵 grid 。

如果矩阵中一行或者一列从前往后与从后往前读是一样的,那么我们称这一行或者这一列是 回文 的。

你可以将 grid 中任意格子的值 翻转 ,也就是将格子里的值从 0 变成 1 ,或者从 1 变成 0 。

请你返回 最少 翻转次数,使得矩阵中 所有 行和列都是 回文的 ,且矩阵中 1 的数目可以被 4 整除 。

思路

并查集+思维+dp

  1. 如果一个数变的话,为了保持回文,那么行对称和列对称的两个数也得变(其实是四个数),所以这就形成了一个集合,且集合与集合之间互不影响
  2. 即使用并查集维护,并维护集合中1的个数和集合大小
  3. 使用dp状态机,dp[i]表示:1的数量 %4=i 的最小操作次数,当遇到根节点,对集合针对0和1都进行翻转,因为集合只能全为0和1
  4. 拓展性更强,把4的倍数改成 2 3 4 5 6 7 8 9 的倍数都没关系

代码

python 复制代码
'''
Author: NEFU AB-IN
Date: 2024-08-07 10:04:41
FilePath: \LeetCode\3240\3240.py
LastEditTime: 2024-08-07 11:06:07
'''
# 3.8.19 import
import random
from collections import Counter, defaultdict, deque
from datetime import datetime, timedelta
from functools import lru_cache, reduce
from heapq import heapify, heappop, heappush, nlargest, nsmallest
from itertools import combinations, compress, permutations, starmap, tee
from math import ceil, comb, fabs, floor, gcd, hypot, log, perm, sqrt
from string import ascii_lowercase, ascii_uppercase
from sys import exit, setrecursionlimit, stdin
from typing import Any, Callable, Dict, List, Optional, Tuple, TypeVar, Union

# Constants
TYPE = TypeVar('TYPE')
N = int(2e5 + 10)
M = int(20)
INF = int(1e12)
OFFSET = int(100)
MOD = int(1e9 + 7)

# Set recursion limit
setrecursionlimit(int(2e9))


class Arr:
    array = staticmethod(lambda x=0, size=N: [x() if callable(x) else x for _ in range(size)])
    array2d = staticmethod(lambda x=0, rows=N, cols=M: [Arr.array(x, cols) for _ in range(rows)])
    graph = staticmethod(lambda size=N: [[] for _ in range(size)])


class Math:
    max = staticmethod(lambda a, b: a if a > b else b)
    min = staticmethod(lambda a, b: a if a < b else b)


class IO:
    input = staticmethod(lambda: stdin.readline().rstrip("\r\n"))
    read = staticmethod(lambda: map(int, IO.input().split()))
    read_list = staticmethod(lambda: list(IO.read()))


class Std:
    class UnionFind:
        """Union-Find data structure."""

        def __init__(self, n):
            self.n = n
            self.parent = list(range(n))  # Parent pointers
            self.rank = Arr.array(1, n)  # Rank (approximate tree height)
            self.size = Arr.array(1, n)  # Size arrays for each node
            self.cnt_1 = Arr.array(0, n)

        def find(self, p):
            """Find the root of the element p with path compression."""
            if self.parent[p] != p:
                self.parent[p] = self.find(self.parent[p])  # Path compression
            return self.parent[p]

        def union(self, p, q):
            """Union the sets containing p and q using union by rank and merge data if available."""
            rootP = self.find(p)
            rootQ = self.find(q)

            if rootP != rootQ:
                # Union by rank
                if self.rank[rootP] > self.rank[rootQ]:
                    self.parent[rootQ] = rootP
                    self.size[rootP] += self.size[rootQ]
                    self.cnt_1[rootP] += self.cnt_1[rootQ]
                    return rootP
                elif self.rank[rootP] < self.rank[rootQ]:
                    self.parent[rootP] = rootQ
                    self.size[rootQ] += self.size[rootP]
                    self.cnt_1[rootQ] += self.cnt_1[rootP]
                    return rootQ
                else:
                    self.parent[rootQ] = rootP
                    self.size[rootP] += self.size[rootQ]
                    self.cnt_1[rootP] += self.cnt_1[rootQ]
                    self.rank[rootP] += 1
                    return rootP
            return rootP  # They are already in the same set

# --------------------------------------------------------------- Division line ------------------------------------------------------------------


class Solution:
    def minFlips(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        uf = Std.UnionFind(m * n)

        def index(i, j): return i * n + j

        for i in range(m):
            for j in range(n):
                uf.cnt_1[index(i, j)] = grid[i][j]

        for i in range(m):
            for j in range(n):
                uf.union(index(i, j), index(i, n - j - 1))
                uf.union(index(i, j), index(m - i - 1, j))

        dp = [0, INF, INF, INF]  # dp[i]表示:1的数量%4=i的最小操作次数
        for i in range(m):
            for j in range(n):
                if uf.find(index(i, j)) == index(i, j):
                    f = [INF] * 4
                    for x in range(4):  # 每个连通块内,要么全1,要么全0
                        # 全变为0,则需要将该连通块的所有1翻转
                        f[(x + 0) % 4] = Math.min(f[(x + 0) % 4], dp[x] + uf.cnt_1[index(i, j)])
                        # 全变为1,则需要将该连通块的所有0翻转,0的数量是总数量减1的数量
                        f[(x + uf.size[index(i, j)]) % 4] = Math.min(f[(x + uf.size[index(i, j)]) % 4], dp[x] + uf.size[index(i, j)] - uf.cnt_1[index(i, j)])
                    dp = f
        return dp[0]
相关推荐
MarkHD12 小时前
第十一天 线性代数基础
线性代数·决策树·机器学习
星沁城16 小时前
240. 搜索二维矩阵 II
java·线性代数·算法·leetcode·矩阵
幼儿园园霸柒柒1 天前
第七章: 7.3求一个3*3的整型矩阵对角线元素之和
c语言·c++·算法·矩阵·c#·1024程序员节
星沁城1 天前
73. 矩阵置零
java·算法·矩阵
jndingxin2 天前
OpenCV视觉分析之目标跟踪(11)计算两个图像之间的最佳变换矩阵函数findTransformECC的使用
opencv·目标跟踪·矩阵
pen-ai2 天前
【机器学习】21. Transformer: 最通俗易懂讲解
人工智能·神经网络·机器学习·矩阵·数据挖掘
会写代码的饭桶2 天前
【C++刷题】力扣-#566-重塑矩阵
c++·leetcode·矩阵
君臣Andy2 天前
【矩阵的大小和方向的分解】
线性代数·矩阵
勤劳的进取家2 天前
利用矩阵函数的导数公式求解一阶常系数微分方程组的解
线性代数
武子康2 天前
大数据-207 数据挖掘 机器学习理论 - 多重共线性 矩阵满秩 线性回归算法
大数据·人工智能·算法·决策树·机器学习·矩阵·数据挖掘