3240. 最少翻转次数使二进制矩阵回文 II

Powered by:NEFU AB-IN

Link

文章目录

  • [3240. 最少翻转次数使二进制矩阵回文 II](#3240. 最少翻转次数使二进制矩阵回文 II)

3240. 最少翻转次数使二进制矩阵回文 II

题意

给你一个 m x n 的二进制矩阵 grid 。

如果矩阵中一行或者一列从前往后与从后往前读是一样的,那么我们称这一行或者这一列是 回文 的。

你可以将 grid 中任意格子的值 翻转 ,也就是将格子里的值从 0 变成 1 ,或者从 1 变成 0 。

请你返回 最少 翻转次数,使得矩阵中 所有 行和列都是 回文的 ,且矩阵中 1 的数目可以被 4 整除 。

思路

并查集+思维+dp

  1. 如果一个数变的话,为了保持回文,那么行对称和列对称的两个数也得变(其实是四个数),所以这就形成了一个集合,且集合与集合之间互不影响
  2. 即使用并查集维护,并维护集合中1的个数和集合大小
  3. 使用dp状态机,dp[i]表示:1的数量 %4=i 的最小操作次数,当遇到根节点,对集合针对0和1都进行翻转,因为集合只能全为0和1
  4. 拓展性更强,把4的倍数改成 2 3 4 5 6 7 8 9 的倍数都没关系

代码

python 复制代码
'''
Author: NEFU AB-IN
Date: 2024-08-07 10:04:41
FilePath: \LeetCode\3240\3240.py
LastEditTime: 2024-08-07 11:06:07
'''
# 3.8.19 import
import random
from collections import Counter, defaultdict, deque
from datetime import datetime, timedelta
from functools import lru_cache, reduce
from heapq import heapify, heappop, heappush, nlargest, nsmallest
from itertools import combinations, compress, permutations, starmap, tee
from math import ceil, comb, fabs, floor, gcd, hypot, log, perm, sqrt
from string import ascii_lowercase, ascii_uppercase
from sys import exit, setrecursionlimit, stdin
from typing import Any, Callable, Dict, List, Optional, Tuple, TypeVar, Union

# Constants
TYPE = TypeVar('TYPE')
N = int(2e5 + 10)
M = int(20)
INF = int(1e12)
OFFSET = int(100)
MOD = int(1e9 + 7)

# Set recursion limit
setrecursionlimit(int(2e9))


class Arr:
    array = staticmethod(lambda x=0, size=N: [x() if callable(x) else x for _ in range(size)])
    array2d = staticmethod(lambda x=0, rows=N, cols=M: [Arr.array(x, cols) for _ in range(rows)])
    graph = staticmethod(lambda size=N: [[] for _ in range(size)])


class Math:
    max = staticmethod(lambda a, b: a if a > b else b)
    min = staticmethod(lambda a, b: a if a < b else b)


class IO:
    input = staticmethod(lambda: stdin.readline().rstrip("\r\n"))
    read = staticmethod(lambda: map(int, IO.input().split()))
    read_list = staticmethod(lambda: list(IO.read()))


class Std:
    class UnionFind:
        """Union-Find data structure."""

        def __init__(self, n):
            self.n = n
            self.parent = list(range(n))  # Parent pointers
            self.rank = Arr.array(1, n)  # Rank (approximate tree height)
            self.size = Arr.array(1, n)  # Size arrays for each node
            self.cnt_1 = Arr.array(0, n)

        def find(self, p):
            """Find the root of the element p with path compression."""
            if self.parent[p] != p:
                self.parent[p] = self.find(self.parent[p])  # Path compression
            return self.parent[p]

        def union(self, p, q):
            """Union the sets containing p and q using union by rank and merge data if available."""
            rootP = self.find(p)
            rootQ = self.find(q)

            if rootP != rootQ:
                # Union by rank
                if self.rank[rootP] > self.rank[rootQ]:
                    self.parent[rootQ] = rootP
                    self.size[rootP] += self.size[rootQ]
                    self.cnt_1[rootP] += self.cnt_1[rootQ]
                    return rootP
                elif self.rank[rootP] < self.rank[rootQ]:
                    self.parent[rootP] = rootQ
                    self.size[rootQ] += self.size[rootP]
                    self.cnt_1[rootQ] += self.cnt_1[rootP]
                    return rootQ
                else:
                    self.parent[rootQ] = rootP
                    self.size[rootP] += self.size[rootQ]
                    self.cnt_1[rootP] += self.cnt_1[rootQ]
                    self.rank[rootP] += 1
                    return rootP
            return rootP  # They are already in the same set

# --------------------------------------------------------------- Division line ------------------------------------------------------------------


class Solution:
    def minFlips(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        uf = Std.UnionFind(m * n)

        def index(i, j): return i * n + j

        for i in range(m):
            for j in range(n):
                uf.cnt_1[index(i, j)] = grid[i][j]

        for i in range(m):
            for j in range(n):
                uf.union(index(i, j), index(i, n - j - 1))
                uf.union(index(i, j), index(m - i - 1, j))

        dp = [0, INF, INF, INF]  # dp[i]表示:1的数量%4=i的最小操作次数
        for i in range(m):
            for j in range(n):
                if uf.find(index(i, j)) == index(i, j):
                    f = [INF] * 4
                    for x in range(4):  # 每个连通块内,要么全1,要么全0
                        # 全变为0,则需要将该连通块的所有1翻转
                        f[(x + 0) % 4] = Math.min(f[(x + 0) % 4], dp[x] + uf.cnt_1[index(i, j)])
                        # 全变为1,则需要将该连通块的所有0翻转,0的数量是总数量减1的数量
                        f[(x + uf.size[index(i, j)]) % 4] = Math.min(f[(x + uf.size[index(i, j)]) % 4], dp[x] + uf.size[index(i, j)] - uf.cnt_1[index(i, j)])
                    dp = f
        return dp[0]
相关推荐
种时光的人10 小时前
CANN仓库核心解读:catlass夯实AIGC大模型矩阵计算的算力基石
线性代数·矩阵·aigc
Zfox_13 小时前
CANN Catlass 算子模板库深度解析:高性能矩阵乘(GEMM)原理、融合优化与模板化开发实践
线性代数·矩阵
lbb 小魔仙19 小时前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构
空白诗19 小时前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵
劈星斩月21 小时前
线性代数-3Blue1Brown《线性代数的本质》特征向量与特征值(12)
线性代数·特征值·特征向量·特征方程
池央1 天前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
深鱼~1 天前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
Zfox_1 天前
CANN PyPTO 编程范式深度解析:并行张量与 Tile 分块操作的架构原理、内存控制与流水线调度机制
线性代数·矩阵·架构
TechWJ1 天前
catlass深度解析:Ascend平台的高性能矩阵运算模板库
线性代数·矩阵·ascend·cann·catlass
deep_drink2 天前
【基础知识一】线性代数的核心:从矩阵变换到 SVD 终极奥义
线性代数·机器学习·矩阵