3240. 最少翻转次数使二进制矩阵回文 II

Powered by:NEFU AB-IN

Link

文章目录

  • [3240. 最少翻转次数使二进制矩阵回文 II](#3240. 最少翻转次数使二进制矩阵回文 II)

3240. 最少翻转次数使二进制矩阵回文 II

题意

给你一个 m x n 的二进制矩阵 grid 。

如果矩阵中一行或者一列从前往后与从后往前读是一样的,那么我们称这一行或者这一列是 回文 的。

你可以将 grid 中任意格子的值 翻转 ,也就是将格子里的值从 0 变成 1 ,或者从 1 变成 0 。

请你返回 最少 翻转次数,使得矩阵中 所有 行和列都是 回文的 ,且矩阵中 1 的数目可以被 4 整除 。

思路

并查集+思维+dp

  1. 如果一个数变的话,为了保持回文,那么行对称和列对称的两个数也得变(其实是四个数),所以这就形成了一个集合,且集合与集合之间互不影响
  2. 即使用并查集维护,并维护集合中1的个数和集合大小
  3. 使用dp状态机,dp[i]表示:1的数量 %4=i 的最小操作次数,当遇到根节点,对集合针对0和1都进行翻转,因为集合只能全为0和1
  4. 拓展性更强,把4的倍数改成 2 3 4 5 6 7 8 9 的倍数都没关系

代码

python 复制代码
'''
Author: NEFU AB-IN
Date: 2024-08-07 10:04:41
FilePath: \LeetCode\3240\3240.py
LastEditTime: 2024-08-07 11:06:07
'''
# 3.8.19 import
import random
from collections import Counter, defaultdict, deque
from datetime import datetime, timedelta
from functools import lru_cache, reduce
from heapq import heapify, heappop, heappush, nlargest, nsmallest
from itertools import combinations, compress, permutations, starmap, tee
from math import ceil, comb, fabs, floor, gcd, hypot, log, perm, sqrt
from string import ascii_lowercase, ascii_uppercase
from sys import exit, setrecursionlimit, stdin
from typing import Any, Callable, Dict, List, Optional, Tuple, TypeVar, Union

# Constants
TYPE = TypeVar('TYPE')
N = int(2e5 + 10)
M = int(20)
INF = int(1e12)
OFFSET = int(100)
MOD = int(1e9 + 7)

# Set recursion limit
setrecursionlimit(int(2e9))


class Arr:
    array = staticmethod(lambda x=0, size=N: [x() if callable(x) else x for _ in range(size)])
    array2d = staticmethod(lambda x=0, rows=N, cols=M: [Arr.array(x, cols) for _ in range(rows)])
    graph = staticmethod(lambda size=N: [[] for _ in range(size)])


class Math:
    max = staticmethod(lambda a, b: a if a > b else b)
    min = staticmethod(lambda a, b: a if a < b else b)


class IO:
    input = staticmethod(lambda: stdin.readline().rstrip("\r\n"))
    read = staticmethod(lambda: map(int, IO.input().split()))
    read_list = staticmethod(lambda: list(IO.read()))


class Std:
    class UnionFind:
        """Union-Find data structure."""

        def __init__(self, n):
            self.n = n
            self.parent = list(range(n))  # Parent pointers
            self.rank = Arr.array(1, n)  # Rank (approximate tree height)
            self.size = Arr.array(1, n)  # Size arrays for each node
            self.cnt_1 = Arr.array(0, n)

        def find(self, p):
            """Find the root of the element p with path compression."""
            if self.parent[p] != p:
                self.parent[p] = self.find(self.parent[p])  # Path compression
            return self.parent[p]

        def union(self, p, q):
            """Union the sets containing p and q using union by rank and merge data if available."""
            rootP = self.find(p)
            rootQ = self.find(q)

            if rootP != rootQ:
                # Union by rank
                if self.rank[rootP] > self.rank[rootQ]:
                    self.parent[rootQ] = rootP
                    self.size[rootP] += self.size[rootQ]
                    self.cnt_1[rootP] += self.cnt_1[rootQ]
                    return rootP
                elif self.rank[rootP] < self.rank[rootQ]:
                    self.parent[rootP] = rootQ
                    self.size[rootQ] += self.size[rootP]
                    self.cnt_1[rootQ] += self.cnt_1[rootP]
                    return rootQ
                else:
                    self.parent[rootQ] = rootP
                    self.size[rootP] += self.size[rootQ]
                    self.cnt_1[rootP] += self.cnt_1[rootQ]
                    self.rank[rootP] += 1
                    return rootP
            return rootP  # They are already in the same set

# --------------------------------------------------------------- Division line ------------------------------------------------------------------


class Solution:
    def minFlips(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        uf = Std.UnionFind(m * n)

        def index(i, j): return i * n + j

        for i in range(m):
            for j in range(n):
                uf.cnt_1[index(i, j)] = grid[i][j]

        for i in range(m):
            for j in range(n):
                uf.union(index(i, j), index(i, n - j - 1))
                uf.union(index(i, j), index(m - i - 1, j))

        dp = [0, INF, INF, INF]  # dp[i]表示:1的数量%4=i的最小操作次数
        for i in range(m):
            for j in range(n):
                if uf.find(index(i, j)) == index(i, j):
                    f = [INF] * 4
                    for x in range(4):  # 每个连通块内,要么全1,要么全0
                        # 全变为0,则需要将该连通块的所有1翻转
                        f[(x + 0) % 4] = Math.min(f[(x + 0) % 4], dp[x] + uf.cnt_1[index(i, j)])
                        # 全变为1,则需要将该连通块的所有0翻转,0的数量是总数量减1的数量
                        f[(x + uf.size[index(i, j)]) % 4] = Math.min(f[(x + uf.size[index(i, j)]) % 4], dp[x] + uf.size[index(i, j)] - uf.cnt_1[index(i, j)])
                    dp = f
        return dp[0]
相关推荐
Bruce_Liuxiaowei10 小时前
文件上传漏洞深度解析:检测与绕过技术矩阵
安全·矩阵·文件上传漏洞
天宫风子11 小时前
线性代数小述(一)
线性代数·算法·矩阵·抽象代数
老歌老听老掉牙17 小时前
使用 SymPy 进行向量和矩阵的高级操作
python·线性代数·算法·矩阵·sympy
sz66cm19 小时前
LeetCode刷题 -- 542. 01矩阵 基于 DFS 更新优化的多源最短路径实现
leetcode·矩阵·深度优先
fen_fen1 天前
学习笔记(25):线性代数,矩阵-矩阵乘法原理
笔记·学习·线性代数
luofeiju1 天前
矩阵QR分解
线性代数·算法
闻缺陷则喜何志丹1 天前
【分治法 容斥原理 矩阵快速幂】P6692 出生点|普及+
c++·线性代数·数学·洛谷·容斥原理·分治法·矩阵快速幂
程序员老周6661 天前
4.大语言模型预备数学知识
人工智能·神经网络·线性代数·自然语言处理·大语言模型·概率论·数学基础
一杯解心烦1 天前
Halcon透视矩阵
矩阵·halcon
Yxh181377845541 天前
短视频矩阵SaaS系统:开源部署与核心功能架构指南
矩阵·架构