Windows 11下RTX 4090深度学习及大模型微调环境安装指南

在安装深度学习及大模型微调环境时,经历了多次反复操作(如CUDA、cuDNN、PyTorch的安装与卸载)。为了避免走弯路,总结了以下步骤:

步骤 1:显卡驱动安装

首先在安装完Windows 11后,安装RTX 4090显卡的驱动。这是后续步骤的基础。请前往英伟达官网,下载并安装适用于您的显卡的最新驱动程序。

步骤 2:安装Ollama

在显卡驱动安装完成后,安装Ollama,安装后即可利用显卡性能进行大模型推理。

步骤 3:安装CUDA

在进行大模型微调时,需安装深度学习环境,包括CUDA。关键步骤如下:

  1. 检查显卡支持的CUDA版本:在命令行中输入以下命令查看支持的CUDA版本:
复制代码
nvidia-smi

最大的坑是选择了不被支持的CUDA版本(如CUDA 12.6),导致PyTorch及TensorFlow都无法兼容4090显卡。因此选择低于12.6版本的CUDA。后来通过perplexity在线查询反馈上图中表示的是低于12.6版本的cuda都可以。

  1. 确认PyTorch兼容版本:由于是实验环境,因此我只考虑pytorch的兼容性,而没有考虑tensorflow。在 [PyTorch官网](https://pytorch.org/get-started/locally/) 查询PyTorch支持的CUDA版本。最终选择CUDA 12.4与PyTorch 2.4.0,Python 3.10。

步骤 4:安装CUDA和cuDNN

前往英伟达官网,下载CUDA 12.4及相应的cuDNN版本。安装过程请参考这篇[博客](https://blog.csdn.net/qq_40379132/article/details/124869378),其中详细介绍了安装步骤及系统环境变量的配置方法。

步骤 5:安装PyTorch

  1. 安装Miniconda:首先安装Miniconda。

  2. 创建虚拟环境:创建用于大模型开发的虚拟环境并激活该环境。

  3. 安装PyTorch:在激活的环境中,使用PyTorch官网提供的安装命令进行安装。推荐使用Conda安装方式,避免依赖包缺失问题。

复制代码
conda install pytorch torchvision torchaudio cudatoolkit=12.4 -c pytorch

步骤 6:验证安装成功

在Jupyter Notebook中运行以下代码,验证是否安装成功:

如上图:

  • true:代表cuda可用

  • 0:代表当前设备编号,默认从0开始

  • 1:gpu数量,本机只有一个4090

  • NVIDIA GeForce RTX 4090:代表第一个gpu名称

到此,恭喜安装完成。

注意:windows环境中,如果刚安装完,提示找不到dll文件之类的错误,建议重启,再执行如上代码。

相关推荐
柳鲲鹏25 分钟前
WINDOWS最快布署WEB服务器:apache2
服务器·前端·windows
思则变2 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest
cver1233 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
漫谈网络3 小时前
WebSocket 在前后端的完整使用流程
javascript·python·websocket
专注VB编程开发20年3 小时前
开机自动后台运行,在Windows服务中托管ASP.NET Core
windows·后端·asp.net
try2find4 小时前
安装llama-cpp-python踩坑记
开发语言·python·llama
博观而约取5 小时前
Django ORM 1. 创建模型(Model)
数据库·python·django
李洋-蛟龙腾飞公司6 小时前
HarmonyOS NEXT应用元服务常见列表操作分组吸顶场景
linux·运维·windows
码农垦荒笔记6 小时前
Git 安装闭坑指南(仅 Windows 环境)
windows·git
静心问道7 小时前
STEP-BACK PROMPTING:退一步:通过抽象在大型语言模型中唤起推理能力
人工智能·语言模型·大模型