基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

[4.1 MSER](#4.1 MSER)

[4.2 HOG特征提取](#4.2 HOG特征提取)

[4.3 SVM](#4.3 SVM)

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2017b

3.部分核心程序

(完整版代码包含中文注释和操作步骤视频)

复制代码
function [Ic,Xmin3,Xmax3,Ymin3,Ymax3] = func_merge(I,Trafficxy,Smj,SCALE);

%提取交通标志的中心点,判断是否为同一个标志
for i = 1:length(Trafficxy)
    Xmin(i)= min(Trafficxy{i}(:,1));
    Xmax(i)= max(Trafficxy{i}(:,1));
    Ymin(i)= min(Trafficxy{i}(:,2));
    Ymax(i)= max(Trafficxy{i}(:,2));
    Xc(i)  = (Xmin(i)+Xmax(i))/2;
    Yc(i)  = (Ymin(i)+Ymax(i))/2;
end
 
%重合点合并
Xmin2=[];
Xmax2=[];
Ymin2=[];
Ymax2=[];

if length(Xc)>1
    indx = 0;
    for i = 1:length(Xc)
        tmps=[];
        for j = 1:length(Xc)
            if sqrt(double((Xc(i) - Xc(j))^2 + (Yc(i) - Yc(j))^2))<=20
               tmps=[tmps,j];
            end
        end
        Xmin2(i) = mean(Xmin(tmps));
        Xmax2(i) = mean(Xmax(tmps));
        Ymin2(i) = mean(Ymin(tmps));
        Ymax2(i) = mean(Ymax(tmps)); 
    end
    %根据XYi的相似性进行合并
else
    Xmin2= Xmin;
    Xmax2= Xmax;
    Ymin2= Ymin;
    Ymax2= Ymax; 
end


%%
index = 0;
for i = 1:length(Xmin2)
    SS    = abs(Ymin2(i)-Ymax2(i))*abs(Xmin2(i)-Xmax2(i))
    if SS>Smj
       index = index + 1; 
       Ic{index} = I(Ymin2(i)-SCALE:Ymax2(i)+SCALE,Xmin2(i)-SCALE:Xmax2(i)+SCALE,:);
       Xmin3(index) = (Xmin(i));
       Xmax3(index) = (Xmax(i));
       Ymin3(index) = (Ymin(i));
       Ymax3(index) = (Ymax(i)); 
    end
end
10_044m

4.算法理论概述

4.1 MSER

MSER是一种用于检测显著区域的技术,它能够提取图像中的稳定区域,这些区域在不同尺度上都是稳定的。MSER对于光照变化具有鲁棒性,这使得它非常适合于交通标志检测。MSER算法基于一个关键概念:对于给定的阈值t,图像中的每一个像素点都可以被标记为前景或背景。随着阈值t的变化,图像中的区域也会随之发生变化。MSER区域定义为在一定范围内,即使阈值变化也不会发生分裂或合并的区域。

4.2 HOG特征提取

HOG特征是一种广泛应用于物体检测领域的特征描述符。它通过计算图像中小区域(称为cell)的梯度直方图来捕捉局部纹理信息,这些信息对于识别特定物体非常有用。

HOG特征提取包括以下步骤:

  1. 图像归一化:将图像缩放到固定大小。
  2. 梯度计算:计算每个像素的梯度幅度和方向。
  3. 细胞分区:将图像分割成小的单元格(cell)。
  4. 梯度直方图:在每个单元格内统计梯度方向直方图。
  5. 块标准化:将相邻的单元格组合成块(block),并对每个块内的直方图进行归一化。

4.3 SVM

SVM试图找到一个超平面,使得两类样本之间的间隔最大化。对于线性可分的情况,SVM寻找一个决策边界w⊤x+b=0,其中w是法向量,b是偏置项。

整个算法流程图如下图所示:

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
一百天成为python专家1 天前
Python循环语句 从入门到精通
开发语言·人工智能·python·opencv·支持向量机·计算机视觉
dundunmm1 天前
【每天一个知识点】时间序列聚类
机器学习·支持向量机·聚类·时序·时序聚类
程高兴1 天前
遗传算法求解冷链路径优化问题matlab代码
开发语言·人工智能·matlab
念念01072 天前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
fengfuyao9852 天前
基于MATLAB的GUI实现人脸检测、眼睛检测以及LBP直方图显示
开发语言·计算机视觉·matlab
一株月见草哇2 天前
Matlab(5)进阶绘图
matlab
项目申报小狂人3 天前
算法应用上新!自适应更新策略差分进化算法求解球形多飞行器路径规划问题,附完整MATLAB代码
开发语言·算法·matlab
躺平都躺不明白3 天前
数学建模-评价类问题-优劣解距离法(TOPSIS)
数学建模·matlab
壹Y.5 天前
MATLAB 绘图速查笔记
笔记·matlab
Evand J5 天前
【MATLAB例程】滑动窗口均值滤波、中值滤波、最小值/最大值滤波对比。附代码下载链接
开发语言·matlab·均值算法