基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

[4.1 MSER](#4.1 MSER)

[4.2 HOG特征提取](#4.2 HOG特征提取)

[4.3 SVM](#4.3 SVM)

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2017b

3.部分核心程序

(完整版代码包含中文注释和操作步骤视频)

function [Ic,Xmin3,Xmax3,Ymin3,Ymax3] = func_merge(I,Trafficxy,Smj,SCALE);

%提取交通标志的中心点,判断是否为同一个标志
for i = 1:length(Trafficxy)
    Xmin(i)= min(Trafficxy{i}(:,1));
    Xmax(i)= max(Trafficxy{i}(:,1));
    Ymin(i)= min(Trafficxy{i}(:,2));
    Ymax(i)= max(Trafficxy{i}(:,2));
    Xc(i)  = (Xmin(i)+Xmax(i))/2;
    Yc(i)  = (Ymin(i)+Ymax(i))/2;
end
 
%重合点合并
Xmin2=[];
Xmax2=[];
Ymin2=[];
Ymax2=[];

if length(Xc)>1
    indx = 0;
    for i = 1:length(Xc)
        tmps=[];
        for j = 1:length(Xc)
            if sqrt(double((Xc(i) - Xc(j))^2 + (Yc(i) - Yc(j))^2))<=20
               tmps=[tmps,j];
            end
        end
        Xmin2(i) = mean(Xmin(tmps));
        Xmax2(i) = mean(Xmax(tmps));
        Ymin2(i) = mean(Ymin(tmps));
        Ymax2(i) = mean(Ymax(tmps)); 
    end
    %根据XYi的相似性进行合并
else
    Xmin2= Xmin;
    Xmax2= Xmax;
    Ymin2= Ymin;
    Ymax2= Ymax; 
end


%%
index = 0;
for i = 1:length(Xmin2)
    SS    = abs(Ymin2(i)-Ymax2(i))*abs(Xmin2(i)-Xmax2(i))
    if SS>Smj
       index = index + 1; 
       Ic{index} = I(Ymin2(i)-SCALE:Ymax2(i)+SCALE,Xmin2(i)-SCALE:Xmax2(i)+SCALE,:);
       Xmin3(index) = (Xmin(i));
       Xmax3(index) = (Xmax(i));
       Ymin3(index) = (Ymin(i));
       Ymax3(index) = (Ymax(i)); 
    end
end
10_044m

4.算法理论概述

4.1 MSER

MSER是一种用于检测显著区域的技术,它能够提取图像中的稳定区域,这些区域在不同尺度上都是稳定的。MSER对于光照变化具有鲁棒性,这使得它非常适合于交通标志检测。MSER算法基于一个关键概念:对于给定的阈值t,图像中的每一个像素点都可以被标记为前景或背景。随着阈值t的变化,图像中的区域也会随之发生变化。MSER区域定义为在一定范围内,即使阈值变化也不会发生分裂或合并的区域。

4.2 HOG特征提取

HOG特征是一种广泛应用于物体检测领域的特征描述符。它通过计算图像中小区域(称为cell)的梯度直方图来捕捉局部纹理信息,这些信息对于识别特定物体非常有用。

HOG特征提取包括以下步骤:

  1. 图像归一化:将图像缩放到固定大小。
  2. 梯度计算:计算每个像素的梯度幅度和方向。
  3. 细胞分区:将图像分割成小的单元格(cell)。
  4. 梯度直方图:在每个单元格内统计梯度方向直方图。
  5. 块标准化:将相邻的单元格组合成块(block),并对每个块内的直方图进行归一化。

4.3 SVM

SVM试图找到一个超平面,使得两类样本之间的间隔最大化。对于线性可分的情况,SVM寻找一个决策边界w⊤x+b=0,其中w是法向量,b是偏置项。

整个算法流程图如下图所示:

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
菌菌的快乐生活3 分钟前
理解支持向量机
算法·机器学习·支持向量机
minstbe9 分钟前
AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python
人工智能·python·支持向量机
机器学习之心10 小时前
Bayes-GRU-Attention的数据多特征分类预测Matlab实现
matlab·分类·gru
叶庭云10 小时前
Matlab 和 R 语言的数组索引都是从 1 开始,并且是左闭右闭的
matlab·编程语言·r·数组索引·从 1 开始
星霜旅人13 小时前
均值聚类算法
人工智能·机器学习·支持向量机
长风清留扬13 小时前
机器学习中的密度聚类算法:深入解析与应用
人工智能·深度学习·机器学习·支持向量机·回归·聚类
γ..13 小时前
基于MATLAB的图像增强
开发语言·深度学习·神经网络·学习·机器学习·matlab·音视频
机器学习之心14 小时前
LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测
神经网络·支持向量机·lstm
落魄君子14 小时前
SVM分类-支持向量机(Support Vector Machine)
神经网络·算法·支持向量机·分类