机器学习-朴素贝叶斯

朴素贝叶斯

  • 贝叶斯
    • [1. 朴素贝叶斯](#1. 朴素贝叶斯)
    • [2. 开发流程](#2. 开发流程)

贝叶斯

python 复制代码
"""
贝叶斯公式
	P(C) 表示C出现的概率, 一般是目标值
	P(W|C) 表示C条件下 W出现的概率
	P(W) 表示W出现的概率
"""

1. 朴素贝叶斯

python 复制代码
"""
朴素贝叶斯
	在贝叶斯基础上增加: 特征条件独立的假设
	特征之间是互为独立的

拉普拉斯平滑系数
	为了避免概率值为0, 在分子和分母分别加上一个数值
	公式
		α是拉普拉斯平滑系数, 一般指定为1
		N¡ 是 F1 符合条件 C 的样本数量
		N 是在条件C下所有样本的总数
		m 表示所有独立样本的总数
	API
		sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
		alpha:拉普拉斯平滑系数
"""

拉普拉斯平滑系数公式

2. 开发流程

python 复制代码
"""
开发流程分析
	1. 获取数据
	2. 数据基本处理
		2.1 处理数据y
		2.2 加载停用词
		2.3 处理数据x 把文档分词
		2.4 统计词频矩阵 作为句子特征
		2.5 准备训练集 测试集
	3. 模型训练
		3.1 实例化贝叶斯 添加拉普拉斯平滑参数
	4. 模型预测
	5. 模型评估
"""
# 1.导入依赖包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import jieba
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB # 多项分布朴素贝叶斯


def MultinomialDemo():
    # 2.获取数据
    data_df = pd.read_csv('./data/书籍评价.csv', encoding ='gbk')
    print('data_df -->\n', data_df)
    # 3.数据基本处理
    # 3-1 处理数据y
    data_df['评论标号'] = np.where(data_df['评价'] == '好评', 1, 0)
    y = data_df['评论标号']
    print('data_df -->\n', data_df)
    # 3-2 加载停用词
    stopwords = []
    with open('./data/stopwords.txt', 'r', encoding='utf-8') as f:
        lines = f.readlines()
        stopwords = [line.strip() for line in lines]
    stopwords = list(set(stopwords))  # 去重
    # 3-3 处理数据x 把文档分词
    comment_list = [','.join(jieba.lcut(line)) for line in data_df['内容']]
    # print('comment_list-->\n', comment_list)
    # 3-4 统计词频矩阵 作为句子特征
    transfer = CountVectorizer(stop_words=stopwords)
    x = transfer.fit_transform(comment_list)
    mynames = transfer.get_feature_names_out()
    x = x.toarray()
    # 3-5 准备训练集测试集
    x_train = x[:10, :]  # 准备训练集
    y_train = y.values[0:10]
    x_test = x[10:, :]  # 准备测试集
    y_test = y.values[10:]
    print('x_train.shape-->', x_train.shape)
    print('y_train.shape-->', y_train.shape)
    # 4.模型训练
    # 4-1 实例化贝叶斯 # 添加拉普拉修正平滑参数
    mymultinomialnb = MultinomialNB()
    mymultinomialnb.fit(x_train, y_train)
    # 5.模型预测
    y_pred = mymultinomialnb.predict(x_test)
    print('预测值-->', y_pred)
    print('真实值-->', y_test)
    # 6.模型评估
    myscore = mymultinomialnb.score(x_test, y_test)
    print('myscore-->', myscore)
相关推荐
珂朵莉MM33 分钟前
2024 睿抗机器人开发者大赛CAIP-编程技能赛-专科组(国赛)解题报告 | 珂学家
开发语言·人工智能·算法·leetcode·职场和发展·深度优先·图论
ㄣ知冷煖★1 小时前
【论文阅读】A Survey on Multimodal Large Language Models
人工智能·语言模型·自然语言处理
视觉语言导航1 小时前
兼顾长、短视频任务的无人机具身理解!AirVista-II:面向动态场景语义理解的无人机具身智能体系统
人工智能·无人机·具身智能
墨绿色的摆渡人2 小时前
pytorch小记(二十二):全面解读 PyTorch 的 `torch.cumprod`——累积乘积详解与实战示例
人工智能·pytorch·python
moonsims2 小时前
低空态势感知:基于AI的DAA技术是低空飞行的重要安全保障-机载端&地面端
人工智能·安全
若叶时代2 小时前
数据分析_Python
人工智能·python·数据分析
虾球xz2 小时前
游戏引擎学习第286天:开始解耦实体行为
c++·人工智能·学习·游戏引擎
武子康2 小时前
大语言模型 11 - 从0开始训练GPT 0.25B参数量 MiniMind2 准备数据与训练模型 DPO直接偏好优化
人工智能·gpt·ai·语言模型·自然语言处理
羽凌寒3 小时前
图像对比度调整(局域拉普拉斯滤波)
人工智能·计算机视觉
大模型铲屎官3 小时前
【Python-Day 14】玩转Python字典(上篇):从零开始学习创建、访问与操作
开发语言·人工智能·pytorch·python·深度学习·大模型·字典