机器学习-朴素贝叶斯

朴素贝叶斯

  • 贝叶斯
    • [1. 朴素贝叶斯](#1. 朴素贝叶斯)
    • [2. 开发流程](#2. 开发流程)

贝叶斯

python 复制代码
"""
贝叶斯公式
	P(C) 表示C出现的概率, 一般是目标值
	P(W|C) 表示C条件下 W出现的概率
	P(W) 表示W出现的概率
"""

1. 朴素贝叶斯

python 复制代码
"""
朴素贝叶斯
	在贝叶斯基础上增加: 特征条件独立的假设
	特征之间是互为独立的

拉普拉斯平滑系数
	为了避免概率值为0, 在分子和分母分别加上一个数值
	公式
		α是拉普拉斯平滑系数, 一般指定为1
		N¡ 是 F1 符合条件 C 的样本数量
		N 是在条件C下所有样本的总数
		m 表示所有独立样本的总数
	API
		sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
		alpha:拉普拉斯平滑系数
"""

拉普拉斯平滑系数公式

2. 开发流程

python 复制代码
"""
开发流程分析
	1. 获取数据
	2. 数据基本处理
		2.1 处理数据y
		2.2 加载停用词
		2.3 处理数据x 把文档分词
		2.4 统计词频矩阵 作为句子特征
		2.5 准备训练集 测试集
	3. 模型训练
		3.1 实例化贝叶斯 添加拉普拉斯平滑参数
	4. 模型预测
	5. 模型评估
"""
# 1.导入依赖包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import jieba
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB # 多项分布朴素贝叶斯


def MultinomialDemo():
    # 2.获取数据
    data_df = pd.read_csv('./data/书籍评价.csv', encoding ='gbk')
    print('data_df -->\n', data_df)
    # 3.数据基本处理
    # 3-1 处理数据y
    data_df['评论标号'] = np.where(data_df['评价'] == '好评', 1, 0)
    y = data_df['评论标号']
    print('data_df -->\n', data_df)
    # 3-2 加载停用词
    stopwords = []
    with open('./data/stopwords.txt', 'r', encoding='utf-8') as f:
        lines = f.readlines()
        stopwords = [line.strip() for line in lines]
    stopwords = list(set(stopwords))  # 去重
    # 3-3 处理数据x 把文档分词
    comment_list = [','.join(jieba.lcut(line)) for line in data_df['内容']]
    # print('comment_list-->\n', comment_list)
    # 3-4 统计词频矩阵 作为句子特征
    transfer = CountVectorizer(stop_words=stopwords)
    x = transfer.fit_transform(comment_list)
    mynames = transfer.get_feature_names_out()
    x = x.toarray()
    # 3-5 准备训练集测试集
    x_train = x[:10, :]  # 准备训练集
    y_train = y.values[0:10]
    x_test = x[10:, :]  # 准备测试集
    y_test = y.values[10:]
    print('x_train.shape-->', x_train.shape)
    print('y_train.shape-->', y_train.shape)
    # 4.模型训练
    # 4-1 实例化贝叶斯 # 添加拉普拉修正平滑参数
    mymultinomialnb = MultinomialNB()
    mymultinomialnb.fit(x_train, y_train)
    # 5.模型预测
    y_pred = mymultinomialnb.predict(x_test)
    print('预测值-->', y_pred)
    print('真实值-->', y_test)
    # 6.模型评估
    myscore = mymultinomialnb.score(x_test, y_test)
    print('myscore-->', myscore)
相关推荐
哈__几秒前
CANN轻量化开发实战:快速上手与多场景适配
人工智能
木梯子2 分钟前
全球开发者疯抢的OpenClaw出中文版了!Molili让你一键使用无需部署
人工智能
乂爻yiyao3 分钟前
Vibe Coding 工程化实践
人工智能·ai
lili-felicity6 分钟前
CANN批处理优化技巧:从动态批处理到流水线并行
人工智能·python
一枕眠秋雨>o<13 分钟前
算子之力:解码CANN ops-nn如何重塑昇腾AI计算范式
人工智能
AI科技15 分钟前
原创音乐人运用AI编曲软件,编曲怎么配和弦的声音
人工智能
dazzle17 分钟前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习
那个村的李富贵18 分钟前
智能炼金术:CANN加速的新材料AI设计系统
人工智能·算法·aigc·cann
凯子坚持 c20 分钟前
CANN 生态新星:`minddata-dataset-engine` 如何加速 AI 数据 pipeline
人工智能
Fairy要carry21 分钟前
面试-GRPO强化学习
开发语言·人工智能