机器学习-朴素贝叶斯

朴素贝叶斯

  • 贝叶斯
    • [1. 朴素贝叶斯](#1. 朴素贝叶斯)
    • [2. 开发流程](#2. 开发流程)

贝叶斯

python 复制代码
"""
贝叶斯公式
	P(C) 表示C出现的概率, 一般是目标值
	P(W|C) 表示C条件下 W出现的概率
	P(W) 表示W出现的概率
"""

1. 朴素贝叶斯

python 复制代码
"""
朴素贝叶斯
	在贝叶斯基础上增加: 特征条件独立的假设
	特征之间是互为独立的

拉普拉斯平滑系数
	为了避免概率值为0, 在分子和分母分别加上一个数值
	公式
		α是拉普拉斯平滑系数, 一般指定为1
		N¡ 是 F1 符合条件 C 的样本数量
		N 是在条件C下所有样本的总数
		m 表示所有独立样本的总数
	API
		sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
		alpha:拉普拉斯平滑系数
"""

拉普拉斯平滑系数公式

2. 开发流程

python 复制代码
"""
开发流程分析
	1. 获取数据
	2. 数据基本处理
		2.1 处理数据y
		2.2 加载停用词
		2.3 处理数据x 把文档分词
		2.4 统计词频矩阵 作为句子特征
		2.5 准备训练集 测试集
	3. 模型训练
		3.1 实例化贝叶斯 添加拉普拉斯平滑参数
	4. 模型预测
	5. 模型评估
"""
# 1.导入依赖包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import jieba
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB # 多项分布朴素贝叶斯


def MultinomialDemo():
    # 2.获取数据
    data_df = pd.read_csv('./data/书籍评价.csv', encoding ='gbk')
    print('data_df -->\n', data_df)
    # 3.数据基本处理
    # 3-1 处理数据y
    data_df['评论标号'] = np.where(data_df['评价'] == '好评', 1, 0)
    y = data_df['评论标号']
    print('data_df -->\n', data_df)
    # 3-2 加载停用词
    stopwords = []
    with open('./data/stopwords.txt', 'r', encoding='utf-8') as f:
        lines = f.readlines()
        stopwords = [line.strip() for line in lines]
    stopwords = list(set(stopwords))  # 去重
    # 3-3 处理数据x 把文档分词
    comment_list = [','.join(jieba.lcut(line)) for line in data_df['内容']]
    # print('comment_list-->\n', comment_list)
    # 3-4 统计词频矩阵 作为句子特征
    transfer = CountVectorizer(stop_words=stopwords)
    x = transfer.fit_transform(comment_list)
    mynames = transfer.get_feature_names_out()
    x = x.toarray()
    # 3-5 准备训练集测试集
    x_train = x[:10, :]  # 准备训练集
    y_train = y.values[0:10]
    x_test = x[10:, :]  # 准备测试集
    y_test = y.values[10:]
    print('x_train.shape-->', x_train.shape)
    print('y_train.shape-->', y_train.shape)
    # 4.模型训练
    # 4-1 实例化贝叶斯 # 添加拉普拉修正平滑参数
    mymultinomialnb = MultinomialNB()
    mymultinomialnb.fit(x_train, y_train)
    # 5.模型预测
    y_pred = mymultinomialnb.predict(x_test)
    print('预测值-->', y_pred)
    print('真实值-->', y_test)
    # 6.模型评估
    myscore = mymultinomialnb.score(x_test, y_test)
    print('myscore-->', myscore)
相关推荐
CareyWYR4 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信5 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20095 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟5 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播6 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训6 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹7 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55187 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora7 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习
牛阿大7 小时前
关于前馈神经网络
人工智能·深度学习·神经网络