机器学习-朴素贝叶斯

朴素贝叶斯

  • 贝叶斯
    • [1. 朴素贝叶斯](#1. 朴素贝叶斯)
    • [2. 开发流程](#2. 开发流程)

贝叶斯

python 复制代码
"""
贝叶斯公式
	P(C) 表示C出现的概率, 一般是目标值
	P(W|C) 表示C条件下 W出现的概率
	P(W) 表示W出现的概率
"""

1. 朴素贝叶斯

python 复制代码
"""
朴素贝叶斯
	在贝叶斯基础上增加: 特征条件独立的假设
	特征之间是互为独立的

拉普拉斯平滑系数
	为了避免概率值为0, 在分子和分母分别加上一个数值
	公式
		α是拉普拉斯平滑系数, 一般指定为1
		N¡ 是 F1 符合条件 C 的样本数量
		N 是在条件C下所有样本的总数
		m 表示所有独立样本的总数
	API
		sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
		alpha:拉普拉斯平滑系数
"""

拉普拉斯平滑系数公式

2. 开发流程

python 复制代码
"""
开发流程分析
	1. 获取数据
	2. 数据基本处理
		2.1 处理数据y
		2.2 加载停用词
		2.3 处理数据x 把文档分词
		2.4 统计词频矩阵 作为句子特征
		2.5 准备训练集 测试集
	3. 模型训练
		3.1 实例化贝叶斯 添加拉普拉斯平滑参数
	4. 模型预测
	5. 模型评估
"""
# 1.导入依赖包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import jieba
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB # 多项分布朴素贝叶斯


def MultinomialDemo():
    # 2.获取数据
    data_df = pd.read_csv('./data/书籍评价.csv', encoding ='gbk')
    print('data_df -->\n', data_df)
    # 3.数据基本处理
    # 3-1 处理数据y
    data_df['评论标号'] = np.where(data_df['评价'] == '好评', 1, 0)
    y = data_df['评论标号']
    print('data_df -->\n', data_df)
    # 3-2 加载停用词
    stopwords = []
    with open('./data/stopwords.txt', 'r', encoding='utf-8') as f:
        lines = f.readlines()
        stopwords = [line.strip() for line in lines]
    stopwords = list(set(stopwords))  # 去重
    # 3-3 处理数据x 把文档分词
    comment_list = [','.join(jieba.lcut(line)) for line in data_df['内容']]
    # print('comment_list-->\n', comment_list)
    # 3-4 统计词频矩阵 作为句子特征
    transfer = CountVectorizer(stop_words=stopwords)
    x = transfer.fit_transform(comment_list)
    mynames = transfer.get_feature_names_out()
    x = x.toarray()
    # 3-5 准备训练集测试集
    x_train = x[:10, :]  # 准备训练集
    y_train = y.values[0:10]
    x_test = x[10:, :]  # 准备测试集
    y_test = y.values[10:]
    print('x_train.shape-->', x_train.shape)
    print('y_train.shape-->', y_train.shape)
    # 4.模型训练
    # 4-1 实例化贝叶斯 # 添加拉普拉修正平滑参数
    mymultinomialnb = MultinomialNB()
    mymultinomialnb.fit(x_train, y_train)
    # 5.模型预测
    y_pred = mymultinomialnb.predict(x_test)
    print('预测值-->', y_pred)
    print('真实值-->', y_test)
    # 6.模型评估
    myscore = mymultinomialnb.score(x_test, y_test)
    print('myscore-->', myscore)
相关推荐
aihuangwu16 分钟前
豆包图表怎么导出
人工智能·ai·deepseek·ds随心转
YMWM_37 分钟前
深度学习中模型的推理和训练
人工智能·深度学习
中二病码农不会遇见C++学姐1 小时前
文明6-mod制作-游戏素材AI生成记录
人工智能·游戏
九尾狐ai1 小时前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
2501_948120151 小时前
基于RFID技术的固定资产管理软件系统的设计与开发
人工智能·区块链
(; ̄ェ ̄)。1 小时前
机器学习入门(十五)集成学习,Bagging,Boosting,Voting,Stacking,随机森林,Adaboost
人工智能·机器学习·集成学习
杀生丸学AI1 小时前
【物理重建】PPISP :辐射场重建中光度变化的物理合理补偿与控制
人工智能·大模型·aigc·三维重建·世界模型·逆渲染
vlln1 小时前
【论文速读】递归语言模型 (Recursive Language Models): 将上下文作为环境的推理范式
人工智能·语言模型·自然语言处理
春日见1 小时前
如何避免代码冲突,拉取分支
linux·人工智能·算法·机器学习·自动驾驶
龙腾AI白云1 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·数据挖掘