机器学习-朴素贝叶斯

朴素贝叶斯

  • 贝叶斯
    • [1. 朴素贝叶斯](#1. 朴素贝叶斯)
    • [2. 开发流程](#2. 开发流程)

贝叶斯

python 复制代码
"""
贝叶斯公式
	P(C) 表示C出现的概率, 一般是目标值
	P(W|C) 表示C条件下 W出现的概率
	P(W) 表示W出现的概率
"""

1. 朴素贝叶斯

python 复制代码
"""
朴素贝叶斯
	在贝叶斯基础上增加: 特征条件独立的假设
	特征之间是互为独立的

拉普拉斯平滑系数
	为了避免概率值为0, 在分子和分母分别加上一个数值
	公式
		α是拉普拉斯平滑系数, 一般指定为1
		N¡ 是 F1 符合条件 C 的样本数量
		N 是在条件C下所有样本的总数
		m 表示所有独立样本的总数
	API
		sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
		alpha:拉普拉斯平滑系数
"""

拉普拉斯平滑系数公式

2. 开发流程

python 复制代码
"""
开发流程分析
	1. 获取数据
	2. 数据基本处理
		2.1 处理数据y
		2.2 加载停用词
		2.3 处理数据x 把文档分词
		2.4 统计词频矩阵 作为句子特征
		2.5 准备训练集 测试集
	3. 模型训练
		3.1 实例化贝叶斯 添加拉普拉斯平滑参数
	4. 模型预测
	5. 模型评估
"""
# 1.导入依赖包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import jieba
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB # 多项分布朴素贝叶斯


def MultinomialDemo():
    # 2.获取数据
    data_df = pd.read_csv('./data/书籍评价.csv', encoding ='gbk')
    print('data_df -->\n', data_df)
    # 3.数据基本处理
    # 3-1 处理数据y
    data_df['评论标号'] = np.where(data_df['评价'] == '好评', 1, 0)
    y = data_df['评论标号']
    print('data_df -->\n', data_df)
    # 3-2 加载停用词
    stopwords = []
    with open('./data/stopwords.txt', 'r', encoding='utf-8') as f:
        lines = f.readlines()
        stopwords = [line.strip() for line in lines]
    stopwords = list(set(stopwords))  # 去重
    # 3-3 处理数据x 把文档分词
    comment_list = [','.join(jieba.lcut(line)) for line in data_df['内容']]
    # print('comment_list-->\n', comment_list)
    # 3-4 统计词频矩阵 作为句子特征
    transfer = CountVectorizer(stop_words=stopwords)
    x = transfer.fit_transform(comment_list)
    mynames = transfer.get_feature_names_out()
    x = x.toarray()
    # 3-5 准备训练集测试集
    x_train = x[:10, :]  # 准备训练集
    y_train = y.values[0:10]
    x_test = x[10:, :]  # 准备测试集
    y_test = y.values[10:]
    print('x_train.shape-->', x_train.shape)
    print('y_train.shape-->', y_train.shape)
    # 4.模型训练
    # 4-1 实例化贝叶斯 # 添加拉普拉修正平滑参数
    mymultinomialnb = MultinomialNB()
    mymultinomialnb.fit(x_train, y_train)
    # 5.模型预测
    y_pred = mymultinomialnb.predict(x_test)
    print('预测值-->', y_pred)
    print('真实值-->', y_test)
    # 6.模型评估
    myscore = mymultinomialnb.score(x_test, y_test)
    print('myscore-->', myscore)
相关推荐
极新4 分钟前
深势科技生命科学高级业务架构师孟月:AI4S 赋能生命科学研发,数智化平台的实践与落地 | 2025极新AIGC峰会演讲实录
人工智能
Light605 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升5 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide5 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农6 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews6 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
脑极体6 小时前
机器人的罪与罚
人工智能·机器人
三不原则6 小时前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM6 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
会周易的程序员6 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构