OpenCV图像滤波(7)cv::getDerivKernels() 函数的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

函数返回用于计算空间图像导数的滤波系数。

该函数计算并返回用于空间图像导数的滤波系数。当 ksize=FILTER_SCHARR 时,生成 Scharr 3x3 核(参见 Scharr)。否则,生成 Sobel 核(参见 Sobel)。这些滤波器通常传递给 sepFilter2D 或其他函数。

这些系数可以用于计算图像的梯度,这对于边缘检测和其他基于梯度的图像处理任务非常重要。

函数原型

cpp 复制代码
void cv::getDerivKernels	
(
	OutputArray 	kx,
	OutputArray 	ky,
	int 	dx,
	int 	dy,
	int 	ksize,
	bool 	normalize = false,
	int 	ktype = CV_32F 
)		

参数

  • 参数kx 输出矩阵,包含行滤波系数。其类型为 ktype。
  • 参数ky 输出矩阵,包含列滤波系数。其类型为 ktype。
  • 参数dx 关于 x 的导数阶数。
  • 参数dy 关于 y 的导数阶数。
  • 参数ksize 孔径大小。它可以是 FILTER_SCHARR、1、3、5 或 7
  • 参数normalize 标志,指示是否归一化(缩放)滤波系数。理论上,系数应该具有分母 =2 * ksize^2 - dx - dy - 2。如果你打算过滤浮点图像,你可能会使用归一化的内核。但是,如果你计算 8 位图像的导数,将结果存储在 16 位图像中,并希望保留所有的小数位,你可能想要设置 normalize=false。
  • 参数ktype 这是指滤波系数的数据类型。它可以是 CV_32F(32 位浮点数)或 CV_64F(64 位浮点数)。

示例代码

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main( int argc, char** argv )
{
    // 读取图像
    cv::Mat src = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/erik.jpg", cv::IMREAD_GRAYSCALE );

    if ( src.empty() )
    {
        std::cout << "Error: Image cannot be loaded!" << std::endl;
        return -1;
    }
    cv::Size sz2Sh( 400, 600 );

    cv::resize( src, src, sz2Sh, 0, 0, cv::INTER_LINEAR_EXACT );

    imshow( "原图", src );

    cv::Mat dst;

    cv::Mat kx, ky;
    cv::getDerivKernels( kx, ky, 1, 0, 3, false );
    cv::sepFilter2D( src, dst, src.depth(), kx, ky );
    imshow( "sepFilter2D", dst );

    cv::waitKey( 0 );
    return 0;
}

运行结果

参数是cv::getDerivKernels( kx, ky, 1, 0, 3, false )时:

参数是cv::getDerivKernels( kx, ky, 1, 0, 5, false )时:

相关推荐
檐下翻书1733 分钟前
产品开发跨职能流程图在线生成工具
大数据·人工智能·架构·流程图·论文笔记
杜子不疼.6 分钟前
计算机视觉热门模型手册:Faster R-CNN / YOLO / SAM 技术原理 + 应用场景对比
人工智能·计算机视觉·r语言·cnn
腾视科技1 小时前
腾视科技TS-SG-SM7系列AI算力模组:32TOPS算力引擎,开启边缘智能新纪元
人工智能·科技
极新1 小时前
深势科技生命科学高级业务架构师孟月:AI4S 赋能生命科学研发,数智化平台的实践与落地 | 2025极新AIGC峰会演讲实录
人工智能
Light606 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升6 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide7 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农7 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews7 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
脑极体7 小时前
机器人的罪与罚
人工智能·机器人