OpenCV图像滤波(7)cv::getDerivKernels() 函数的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

函数返回用于计算空间图像导数的滤波系数。

该函数计算并返回用于空间图像导数的滤波系数。当 ksize=FILTER_SCHARR 时,生成 Scharr 3x3 核(参见 Scharr)。否则,生成 Sobel 核(参见 Sobel)。这些滤波器通常传递给 sepFilter2D 或其他函数。

这些系数可以用于计算图像的梯度,这对于边缘检测和其他基于梯度的图像处理任务非常重要。

函数原型

cpp 复制代码
void cv::getDerivKernels	
(
	OutputArray 	kx,
	OutputArray 	ky,
	int 	dx,
	int 	dy,
	int 	ksize,
	bool 	normalize = false,
	int 	ktype = CV_32F 
)		

参数

  • 参数kx 输出矩阵,包含行滤波系数。其类型为 ktype。
  • 参数ky 输出矩阵,包含列滤波系数。其类型为 ktype。
  • 参数dx 关于 x 的导数阶数。
  • 参数dy 关于 y 的导数阶数。
  • 参数ksize 孔径大小。它可以是 FILTER_SCHARR、1、3、5 或 7
  • 参数normalize 标志,指示是否归一化(缩放)滤波系数。理论上,系数应该具有分母 =2 * ksize^2 - dx - dy - 2。如果你打算过滤浮点图像,你可能会使用归一化的内核。但是,如果你计算 8 位图像的导数,将结果存储在 16 位图像中,并希望保留所有的小数位,你可能想要设置 normalize=false。
  • 参数ktype 这是指滤波系数的数据类型。它可以是 CV_32F(32 位浮点数)或 CV_64F(64 位浮点数)。

示例代码

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main( int argc, char** argv )
{
    // 读取图像
    cv::Mat src = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/erik.jpg", cv::IMREAD_GRAYSCALE );

    if ( src.empty() )
    {
        std::cout << "Error: Image cannot be loaded!" << std::endl;
        return -1;
    }
    cv::Size sz2Sh( 400, 600 );

    cv::resize( src, src, sz2Sh, 0, 0, cv::INTER_LINEAR_EXACT );

    imshow( "原图", src );

    cv::Mat dst;

    cv::Mat kx, ky;
    cv::getDerivKernels( kx, ky, 1, 0, 3, false );
    cv::sepFilter2D( src, dst, src.depth(), kx, ky );
    imshow( "sepFilter2D", dst );

    cv::waitKey( 0 );
    return 0;
}

运行结果

参数是cv::getDerivKernels( kx, ky, 1, 0, 3, false )时:

参数是cv::getDerivKernels( kx, ky, 1, 0, 5, false )时:

相关推荐
灵途科技11 分钟前
灵途科技当选中国电子商会智能传感器专委会副理事长单位
大数据·人工智能·科技
非著名架构师12 分钟前
“低空经济”的隐形护航者:AI驱动的秒级风场探测如何保障无人机物流与城市空管安全?
人工智能·数据分析·疾风气象大模型·高精度天气预报数据·galeweather.cn·高精度气象
洁洁!27 分钟前
openEuler在WSL2中的GPU加速AI训练实战指南
人工智能·数据挖掘·数据分析
桂花饼29 分钟前
字节Seedream-4.5架构揭秘:当AI开始拥有“版式推理”能力,CISAN与DLE引擎如何重构多图生成?
人工智能·aigc·idea·sora2 api·gemini 3 pro·claude opus 4.5·doubao-seedream
whaosoft-14337 分钟前
51c视觉~合集55
人工智能
AI营销快线40 分钟前
2025年AI营销内容生产革命:成本减半,效率倍增的关键
人工智能
正在走向自律44 分钟前
AiOnly平台x FastGPT:一键调用Gemini 3 Pro系列模型从零构建AI工作流
大数据·数据库·人工智能·aionly·nano banana pro·gemini 3 pro
沃斯堡&蓝鸟1 小时前
DAY22 推断聚类后簇的类型
人工智能·机器学习·聚类
老蒋新思维1 小时前
创客匠人 2025 万人峰会实录:AI 智能体重构创始人 IP 变现逻辑 —— 从 0 到年入千万的实战路径
大数据·网络·人工智能·tcp/ip·创始人ip·创客匠人·知识变现
这张生成的图像能检测吗1 小时前
(论文速读)MoE-Adapters++: 过动态混合专家适配器实现更有效的视觉语言模型的持续学习
人工智能·自然语言处理·视觉语言模型·持续学习