7 时间序列单特征:多输入->多输出(LSTM/GRU/TCN)

今天看到关于时间序列预测知识点,竟然要收费!本着开源第一的思想,自己也找到相关的代码尝试一下写几个通用的模版。

模型想要

输入:Input = (input_size, hidden_size),其中:input_size = time_stemp,因为是单个变量因此hidden_size = 1;

输出: output_size; 输出的步长;

1 数据预处理

一般数据都是按照时间步长展开,然后每一步可能有很多的特征。

比如下面的(来自科大讯飞的比赛数据,想要的可私聊):target:就是目标,new_dt 就是时间。

输出处理模块:通过这个模块就会得到一个 X =【batch_size,time_stemp, 1】y=[batch_size,output_size],batch_size 就是样本的个数;

复制代码
def create_dataset(X, n_steps_in, n_steps_out):
    # n_steps_in 输入步长
    # n_steps_out输出步长
    print(f"Input data shape before processing: {X.shape}")
    
    Xs, ys = [], []
    for i in range(len(X) - n_steps_in - n_steps_out + 1):
        Xs.append(X[i:(i + n_steps_in)])
        ys.append(X[(i + n_steps_in):(i + n_steps_in + n_steps_out)])
    
    Xs = np.array(Xs)
    ys = np.array(ys)
    
    print(f"Xs shape after processing: {Xs.shape}")
    print(f"ys shape after processing: {ys.shape}")
    
    return Xs, ys

2 LSTM模型

复制代码
import numpy as np
import pandas as pd

from sklearn.model_selection import train_test_split

from tqdm import tqdm
from sklearn.preprocessing import LabelEncoder
#import h3
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
from tqdm import tqdm

from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Flatten, Reshape, LSTM, Dropout, Dense, Bidirectional, BatchNormalization, Input, LayerNormalization, GRU, Conv1D, Concatenate, MaxPooling1D, MultiHeadAttention, GlobalAveragePooling1D, Activation, SpatialDropout1D, Lambda
from tensorflow.keras.losses import MeanSquaredError, Huber
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
import warnings
import tensorflow as tf
from tensorflow.keras.regularizers import l2


train_df = pd.read_csv('../data/dataset/train.csv')
#train_df = train_df[train_df.dt<100].reset_index(drop=True)
test_df = pd.read_csv('../data/dataset/test.csv')
#train_df['target_div_dt'] = train_df['target'] / train_df['dt']

df_all = pd.concat([train_df,test_df])
df_all['dt_max'] = df_all.groupby('id')['dt'].transform('max')
df_all = df_all.sort_values(['id','dt']).reset_index(drop=True)
df_all['new_dt'] = df_all['dt_max']-df_all['dt']
df_all = df_all.sort_values(['id','new_dt']).reset_index(drop=True)
df_all.tail()
train_df = df_all[~df_all['target'].isna()].reset_index(drop=True)
test_df = df_all[df_all['target'].isna()].reset_index(drop=True)

# 构建训练数据
def create_dataset(X, n_steps_in, n_steps_out):
    print(f"Input data shape before processing: {X.shape}")
    
    Xs, ys = [], []
    for i in range(len(X) - n_steps_in - n_steps_out + 1):
        Xs.append(X[i:(i + n_steps_in)])
        ys.append(X[(i + n_steps_in):(i + n_steps_in + n_steps_out)])
    
    Xs = np.array(Xs)
    ys = np.array(ys)
    
    print(f"Xs shape after processing: {Xs.shape}")
    print(f"ys shape after processing: {ys.shape}")
    
    return Xs, ys

   
def create_model(input_shape, output_length,lr=1e-3, warehouse="None"):

    model = Sequential()
    model.add(Input(shape=input_shape))
    
    model.add(Conv1D(filters=32, kernel_size=3, activation='relu', padding='same', kernel_regularizer=l2()))
    model.add(BatchNormalization())
    model.add(Dropout(0.4))
    model.add(LSTM(units=64, activation='relu', return_sequences=False))
    model.add(Dense(output_length))
    model.compile(loss=MeanSquaredError(), optimizer=tf.keras.optimizers.RMSprop(learning_rate=lr, rho=0.9))
                  
    return model

# 迭代损失
def plot_loss(history, warehouse):
    plt.figure(figsize=(8, 6))

    # training and validation loss
    plt.plot(history.history['loss'], label='Training Loss', color='blue', linewidth=2)
    plt.plot(history.history['val_loss'], label='Validation Loss', color='orange', linewidth=2)
    
    # minimum validation loss
    min_val_loss = min(history.history['val_loss'])
    min_val_loss_epoch = history.history['val_loss'].index(min_val_loss)
    plt.axvline(min_val_loss_epoch, linestyle='--', color='gray', linewidth=1)
    plt.text(min_val_loss_epoch, min_val_loss, f'Min Val Loss: {min_val_loss:.4f}', 
             verticalalignment='bottom', horizontalalignment='right', color='gray', fontsize=10)
    
    plt.title(f'Training and Validation Loss for Warehouse: {warehouse}', fontsize=16)
    plt.xlabel('Epoch', fontsize=14)
    plt.ylabel('Loss', fontsize=14)
    plt.legend(fontsize=12)
    plt.grid(True)

    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.tight_layout()
    
    #plt.savefig(f'training_validation_loss_{warehouse}.png', dpi=300)
    
    plt.show()


n_features = 1  # 因为这是一个一维序列
n_steps_in = 70  # 输入序列的长度
n_steps_out = 10  # 预测序列的长度
# 数据预处理
# 数据预处理

# 随机种子
tf.random.set_seed(42)
import numpy as np
np.random.seed(42)
import random
import os
error_df = {}
def set_random_seed(seed_value):
    # Set `PYTHONHASHSEED` environment variable at a fixed value
    os.environ['PYTHONHASHSEED']=str(seed_value)
    # Set `python` built-in pseudo-random generator at a fixed value
    random.seed(seed_value)
    # Set `numpy` pseudo-random generator at a fixed value
    np.random.seed(seed_value)
    # Set `tensorflow` pseudo-random generator at a fixed value
    tf.random.set_seed(seed_value)
set_random_seed(42)
import keras

class PrintCallback(keras.callbacks.Callback):
    def __init__(self, print_every=1):
        super(PrintCallback, self).__init__()
        self.print_every = print_every

    def on_epoch_end(self, epoch, logs=None):
        if (epoch + 1) % self.print_every == 0:
            print(f"Epoch {epoch + 1}: loss={logs['loss']:.4f}, val_loss={logs['val_loss']:.4f}")

# 使用示例
print_every_n_epochs = 5  # 每 5 个 epoch 打印一次
error_id = []
for id in tqdm(train_df.id.unique().tolist()):
    try:
        temp_df = train_df[train_df.id==id].reset_index(drop=True)
        X = temp_df.target.values
        x_test = X[-n_steps_in:]
        train_X,train_y =  create_dataset(X,n_steps_in,n_steps_out)
        X_train, X_val, y_train, y_val = train_test_split(train_X, train_y, test_size=0.2, shuffle=True)
        model = create_model(input_shape=(n_steps_in, 1),output_length=n_steps_out,lr=1e-3)
    
        callbacks = [
        PrintCallback(print_every=print_every_n_epochs),
        EarlyStopping(monitor='val_loss', patience=25, restore_best_weights=True),]
    
    
        history = model.fit(
                X_train, y_train, 
                epochs=150, 
                batch_size=64, 
                #validation_split=0.2, 
                validation_data=(X_val, y_val), 
                callbacks=callbacks,
                verbose=0
            )
        test_y = model.predict(x_test.reshape((-1,n_steps_in)))
        test_df.loc[test_df.id==id,'target'] = test_y[0]
        error = mean_squared_error(best_sub[best_sub['id']==id]['target'],test_y[0])
        error_df[id] = round(error,4)
        print(f'linear model {id} VS best sb ERROR = {error}')
        
    except Exception as e:
        error_id.append(id)
        print(f'error id = {id}',e)
    break
    pass

训练很抖:多加点归一化吧;

import matplotlib.pyplot as plt

plot_loss(history,warehouse=id)

3 GRU

GRU 模块要比LSTM稳定的多;

复制代码
def create_model(input_shape, output_length,lr=1e-3, warehouse="None"):

    model = Sequential()
    model.add(Input(shape=input_shape))
    
    model.add(Conv1D(filters=32, kernel_size=3, activation='relu', padding='same', kernel_regularizer=l2()))
    model.add(BatchNormalization())
    model.add(Dropout(0.4))
    model.add(GRU(units=64, activation='relu', return_sequences=False))
    model.add(Dense(output_length))
    #model.compile(loss=MeanSquaredError(), optimizer=tf.keras.optimizers.RMSprop(learning_rate=lr, rho=0.9))
    model.compile(loss=MeanSquaredError(), optimizer=tf.keras.optimizers.RMSprop(lr=lr))

                  
    return model

4 TCN

模型:收敛的也很快!运行起来很流畅!

复制代码
def create_model(input_shape, output_length,lr=1e-3, warehouse="None"):

    model = Sequential()
    model.add(Input(shape=input_shape))
    
    model.add(Conv1D(filters=32, kernel_size=3, activation='relu', padding='causal',dilation_rate=1, kernel_regularizer=l2()))
    model.add(BatchNormalization())
    model.add(Dropout(0.4))

    model.add(Conv1D(filters=64, kernel_size=3, activation='relu', padding='causal',dilation_rate=1, kernel_regularizer=l2()))
    model.add(BatchNormalization())
    model.add(Dropout(0.4))

    model.add(Conv1D(filters=32, kernel_size=2, activation='relu', padding='causal',dilation_rate=1, kernel_regularizer=l2()))
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(Flatten())
    model.add(Dense(output_length))
    #model.compile(loss=MeanSquaredError(), optimizer=tf.keras.optimizers.RMSprop(learning_rate=lr, rho=0.9))
    model.compile(loss=MeanSquaredError(), optimizer=tf.keras.optimizers.RMSprop(lr=lr))

                  
    return model

相关推荐
边缘计算社区39 分钟前
FPGA与边缘AI:计算革命的前沿力量
人工智能·fpga开发
飞哥数智坊1 小时前
打工人周末充电:15条AI资讯助你领先一小步
人工智能
Tech Synapse1 小时前
基于CARLA与PyTorch的自动驾驶仿真系统全栈开发指南
人工智能·opencv·sqlite
layneyao1 小时前
深度强化学习(DRL)实战:从AlphaGo到自动驾驶
人工智能·机器学习·自动驾驶
海特伟业2 小时前
隧道调频广播覆盖的实现路径:隧道无线广播技术赋能行车安全升级,隧道汽车广播收音系统助力隧道安全管理升级
人工智能
CareyWYR2 小时前
每周AI论文速递(250421-250425)
人工智能
追逐☞2 小时前
机器学习(10)——神经网络
人工智能·神经网络·机器学习
winner88812 小时前
对抗学习:机器学习里的 “零和博弈”,如何实现 “双赢”?
人工智能·机器学习·gan·对抗学习
Elastic 中国社区官方博客2 小时前
使用 LangGraph 和 Elasticsearch 构建强大的 RAG 工作流
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
娃娃略2 小时前
【AI模型学习】双流网络——更强大的网络设计
网络·人工智能·pytorch·python·神经网络·学习