[flink]随笔

一、 flink运行模式

yarn上部署的过程是:客户端把Flink应用提交给Yarn的ResourceManager,Yarn的ResourceManager会向Yarn的NodeManager申请容器。在这些容器上,Flink会部署JobManager和TaskManager的实例,从而启动集群。Flink会根据运行在JobManager上的作业所需要的Slot数量动态分配TaskManager资源。

bash 复制代码
yarn-session.sh \
-d #后台运行 
-nm #在yarn上显示的名字

二、并行度优先级

代码算子>代码env>提交时限定>配置文件

复制代码
env.setParallelism(5); #env
.flatMap(xxx).setParallelism(5) #算子

三、算子链(Operator Chain)

一个数据流在算子之间传输数据的形式可以是一对一(one to one)的直通(forwarding)模式,也可以是打乱的重分区(redistributing)模式,具体是哪一种形式,取决于算子的种类。

1、算子间的数据传输

1)一对一(one to one,forwarding)

这种模式下,数据流维护着分区以及元素的顺序。比如图中的source和map算子,source算子读取数据之后,可以直接发送给map算子做处理,他们之间不需要重分区 ,也不需要调整数据的顺序 。这就意味着map算子的子任务,看到的元素个数和顺序跟source算子的子任务产生的完全一样,保证着'一对一'的关系。map、filter、flatMap等算子都是这种one-to-one的对应关系。这种关系类似于Spark中的窄依赖

2)重分区(Redistributing)

在这种模式下,数据流的分区会发生改变。比如图中的map和后面的keyBy/window算子之间,以及keyBy/window算子和sink算子之间,都是这样的关系。

每一个算子的子任务,会根据数据传输的策略,把数据发送到不同的下游目标任务 。这些传输方式都会引起重分区的过程,这一过程类似于Spark中的Shuffle

2、合并算子链

在Flink中,并行度相同的一对一(one to one)算子操作,可以直接链接在一起形成一个'大'的任务(task),这样原来的算子就成为了真正任务里的一部分,如下图所示。每个task会被一个线程执行。这样的技术被称为"算子链"(Operator Chain)。

上图中Source和map之间满足了算子链的要求,所以可以直接合并在一起,形成了一个任务;因为并行度为2,所以合并后也有两个并行子任务。这样,这个数据流图所表示的作业最终会有5个任务,由5个线程并行执行。

将算子链接成task事非常有效的优化;可以减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提高吞吐量。

Flink默认会按照算子链的原则进行链接合并,如果我们想要禁止合并或者自行定义,也可以在代码中对算子做一些特定的设置。

java 复制代码
//禁止算子链
.map(xxx).disableChaining;
//从当前算子开始新链
.map(xxx).startNewChain;

3、梳理算子链

1)算子间传输关系:

一对一、充分区

2)算子,串在一起的条件:

一对一 且 并行度相同

3)关于算子链的api

①全局禁用算子链:env.disableOperatorChaining();

②某个算子不参与链化:算子A(xxx).disableChaining(); 此时算子A不会与前面和后面的算子串 在一起

③从某个算子开启新的链条:算子A.startNewChain();算子A不与前面的算子串在一起,从A开 始正常链化。

4)禁用算子链的情况

计算逻辑复杂:如果一个task中的多个算子,每个算子计算逻辑都很复杂就不适合合在一起。

排错:如果在一起算子链中,就不知道是具体哪个算子出问题了。

相关推荐
TDengine (老段)11 分钟前
TDengine 字符串函数 CHAR 用户手册
java·大数据·数据库·物联网·时序数据库·tdengine·涛思数据
2501_9336707913 分钟前
高职大数据技术专业需要的基础
大数据
科技峰行者2 小时前
微软与OpenAI联合研发“Orion“超大规模AI模型:100万亿参数开启“科学家AI“新纪元
大数据·人工智能·microsoft
拓端研究室2 小时前
2025母婴用品双11营销解码与AI应用洞察报告|附40+份报告PDF、数据、绘图模板汇总下载
大数据·人工智能
GOATLong2 小时前
git使用
大数据·c语言·c++·git·elasticsearch
hans汉斯3 小时前
【计算机科学与应用】基于BERT与DeepSeek大模型的智能舆论监控系统设计
大数据·人工智能·深度学习·算法·自然语言处理·bert·去噪
sensen_kiss5 小时前
INT303 Big Data Analysis 大数据分析 Pt.3 数据挖掘(Data Mining)
大数据·数据挖掘·数据分析
雪碧聊技术6 小时前
爬虫是什么?
大数据·爬虫·python·数据分析
anscos6 小时前
庭田科技亮相成都复材盛会,以仿真技术赋能产业革新
大数据·人工智能·科技
少废话h7 小时前
Spark 中数据读取方式详解:SparkSQL(DataFrame)与 SparkCore(RDD)方法对比及实践
大数据·sql·spark