前言:LLaMA-Factory项目的目标是整合主流的各种高效训练微调技术,适配市场主流开源模型,形成一个功能丰富,适配性好的训练框架。
目录
- [1. 前期准备](#1. 前期准备)
- [2. 原始模型直接推理](#2. 原始模型直接推理)
- [3. 自定义数据集](#3. 自定义数据集)
- [4. 模型训练](#4. 模型训练)
- [5. 模型合并并导出](#5. 模型合并并导出)
1. 前期准备
下载源码:https://github.com/hiyouga/LLaMA-Factory
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"
2. 原始模型直接推理
只需要配置template和model_name_or_path。
终端运行:
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat \
--model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \
--template llama3
运行完可以在本地服务器访问:http://localhost:7860/
3. 自定义数据集
llama-factory支持json格式文件,自定义数据集中每条数据格式如下:
{
"prompt": "介绍一下苹果",
"response": "苹果公司(Apple Inc.),是一家美国跨国科技公司,总部位于加利福尼亚州库比蒂诺。"
}
将文件放到llama factory项目下的data文件夹,然后编辑data_info.json文件,添加数据集映射:
"demo": {
"file_name": "demo.json",
"file_sha1":dwfewcevrvff
"columns": {
"prompt": "prompt",
"response": "response"
}
demo是映射后使用的数据集别名,file_name是数据集路径,file_sha1不是必需的,但是可以缓存预处理后的数据集,避免二次训练时重新预处理,sha1的生成可以通过终端运行shasum -a 1 filename(linux命令),columns是json文件中的列名映射
4. 模型训练
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \
--dataset alpaca_gpt4_zh \
--dataset_dir ./data \
--template llama3 \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ./saves/LLaMA3-8B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 50 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 50 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 5.0 \
--max_samples 1000 \
--val_size 0.1 \
--plot_loss \
--fp16
--logging_dir path_to_logging_directory
一些重要参数解读:
- stage: 训练方式,pt,sft等
- model_name_or_path:基础模型的路径
- dataset:数据集名称,data_info.json中的
- template:模板,在readme.md中可以找到对应的模型模板
- finetuning_type:微调方式,一般选lora
- output_dir:存储模型路径
- logging_dir:日志路径
5. 模型合并并导出
训练后得到的模型不能直接使用,需要和基础模型合并后导出:
CUDA_VISIBLE_DEVICES=0 python src/export_model.py \
--model_name_or_path qwen/Qwen-7B \
--adapter_name_or_path /mnt/workspace/llama_factory_demo/qwen/lora/sft/checkpoint-50 \
--template qwen \
--finetuning_type lora \
--export_dir /mnt/workspace/merge_w/qwen \
--export_legacy_format False
- model_name_or_path: 基础模型路径
- adapter_name_or_path:训练后的模型路径
- template:模板
- finetuning_type:微调方式
- export_dir:导出模型路径