数据结构与算法基础篇--有向无环

. - 力扣(LeetCode)

力扣-207题

要判定一个图是否为有向无环图(DAG, Directed Acyclic Graph),可以使用拓扑排序(Topological Sort)的方法。如果一个有向图存在拓扑排序,那么它就是一个DAG。

解决思路:拓扑排序

  • 构建入度数组:首先构建每个节点的入度数组。
  • 初始化队列:将所有入度为0的节点加入队列,这些节点可以作为拓扑排序的起始点。
  • 拓扑排序:从队列中逐个取出节点,将其邻接节点的入度减1,如果某个邻接节点的入度变为0,则将其加入队列。
  • 检查是否完成:最终检查是否所有节点都被处理过,如果是则说明可以完成所有课程,否则不能。
java 复制代码
public static boolean canFinish(int numCourses, int[][] prerequisites) {
        int[] inDegree = new int[numCourses];
        List<List<Integer>> adjList = new ArrayList<>();  // 邻接表

        // 初始化邻接表
        for (int i = 0; i < numCourses; i++) {
            adjList.add(new ArrayList<>());
        }

        // 构建图和入度数组
        for (int[] prerequisite : prerequisites) {
            int dest = prerequisite[0];
            int src = prerequisite[1];
            adjList.get(src).add(dest);  // 构建邻接表
            inDegree[dest]++;  // 计算入度
        }

        // 将所有入度为0的节点加入队列
        LinkedList<Integer> list = new LinkedList<>();
        for (int i = 0; i < numCourses; i++) {
            if (inDegree[i] == 0) {
                list.add(i);
            }
        }
        int re = 0; // 记录已经处理过的节点数
        while (!list.isEmpty()) {
            re++;
            Integer current = list.poll();
            // 遍历当前节点的所有邻接节点
            for (int neighbor : adjList.get(current)) {
                inDegree[neighbor]--;  // 邻接节点入度减1
                if (inDegree[neighbor] == 0) {
                    list.add(neighbor);  // 如果入度为0,加入队列
                }
            }
        }
        // 如果所有课程都被处理过,则可以完成所有课程
        return re == numCourses;
    }

相关推荐
栀秋6662 分钟前
你会先找行还是直接拍平?两种二分策略你Pick哪个?
前端·javascript·算法
如果你想拥有什么先让自己配得上拥有18 分钟前
数学思想和数学思维分别都有什么?
线性代数·算法·机器学习
长安er1 小时前
LeetCode136/169/75/31/287 算法技巧题核心笔记
数据结构·算法·leetcode·链表·双指针
MarkHD1 小时前
智能体在车联网中的应用:第29天 多智能体完全合作场景的核心算法:从CTDE思想到VDN与MADDPG的深度解析
算法
wanzhong23331 小时前
CUDA学习5-矩阵乘法(共享内存版)
深度学习·学习·算法·cuda·高性能计算
fufu03112 小时前
Linux环境下的C语言编程(四十八)
数据结构·算法·排序算法
Yingye Zhu(HPXXZYY)2 小时前
Solution to Luogu P6340
算法
小熳芋3 小时前
单词搜索- python-dfs&剪枝
算法·深度优先·剪枝
Xの哲學3 小时前
Linux SLAB分配器深度解剖
linux·服务器·网络·算法·边缘计算
bu_shuo3 小时前
MATLAB中的转置操作及其必要性
开发语言·算法·matlab