数据结构与算法基础篇--有向无环

. - 力扣(LeetCode)

力扣-207题

要判定一个图是否为有向无环图(DAG, Directed Acyclic Graph),可以使用拓扑排序(Topological Sort)的方法。如果一个有向图存在拓扑排序,那么它就是一个DAG。

解决思路:拓扑排序

  • 构建入度数组:首先构建每个节点的入度数组。
  • 初始化队列:将所有入度为0的节点加入队列,这些节点可以作为拓扑排序的起始点。
  • 拓扑排序:从队列中逐个取出节点,将其邻接节点的入度减1,如果某个邻接节点的入度变为0,则将其加入队列。
  • 检查是否完成:最终检查是否所有节点都被处理过,如果是则说明可以完成所有课程,否则不能。
java 复制代码
public static boolean canFinish(int numCourses, int[][] prerequisites) {
        int[] inDegree = new int[numCourses];
        List<List<Integer>> adjList = new ArrayList<>();  // 邻接表

        // 初始化邻接表
        for (int i = 0; i < numCourses; i++) {
            adjList.add(new ArrayList<>());
        }

        // 构建图和入度数组
        for (int[] prerequisite : prerequisites) {
            int dest = prerequisite[0];
            int src = prerequisite[1];
            adjList.get(src).add(dest);  // 构建邻接表
            inDegree[dest]++;  // 计算入度
        }

        // 将所有入度为0的节点加入队列
        LinkedList<Integer> list = new LinkedList<>();
        for (int i = 0; i < numCourses; i++) {
            if (inDegree[i] == 0) {
                list.add(i);
            }
        }
        int re = 0; // 记录已经处理过的节点数
        while (!list.isEmpty()) {
            re++;
            Integer current = list.poll();
            // 遍历当前节点的所有邻接节点
            for (int neighbor : adjList.get(current)) {
                inDegree[neighbor]--;  // 邻接节点入度减1
                if (inDegree[neighbor] == 0) {
                    list.add(neighbor);  // 如果入度为0,加入队列
                }
            }
        }
        // 如果所有课程都被处理过,则可以完成所有课程
        return re == numCourses;
    }

相关推荐
guygg8813 分钟前
基于matlab的FIR滤波器
开发语言·算法·matlab
ysh98881 小时前
PP-OCR:一款实用的超轻量级OCR系统
算法
遇雪长安1 小时前
差分定位技术:原理、分类与应用场景
算法·分类·数据挖掘·rtk·差分定位
数通Dinner1 小时前
RSTP 拓扑收敛机制
网络·网络协议·tcp/ip·算法·信息与通信
张人玉3 小时前
C# 常量与变量
java·算法·c#
weixin_446122464 小时前
LinkedList剖析
算法
百年孤独_5 小时前
LeetCode 算法题解:链表与二叉树相关问题 打打卡
算法·leetcode·链表
我爱C编程5 小时前
基于拓扑结构检测的LDPC稀疏校验矩阵高阶环检测算法matlab仿真
算法·matlab·矩阵·ldpc·环检测
算法_小学生5 小时前
LeetCode 75. 颜色分类(荷兰国旗问题)
算法·leetcode·职场和发展
运器1235 小时前
【一起来学AI大模型】算法核心:数组/哈希表/树/排序/动态规划(LeetCode精练)
开发语言·人工智能·python·算法·ai·散列表·ai编程