目标检测——YOLOv8训练自己的数据集

1.下载YOLOv8源代码

下载链接

2. 配置环境
bash 复制代码
conda create -n yolov8 python=3.8
conda activate yolov8
pip install -r requirements.txt
pip install -e .

无需执行下面这步!

bash 复制代码
pip freeze > requirements.txt # 导出conda环境中相关的包
3. 数据集准备

数据集标签的格式标注为yolo的txt格式,在labelimg选择YOLO即可,然后进行标注,最后把数据集划分为训练集,验证集,(测试集)即可

  • 非yolo的txt格式,需进行数据集格式转换,相应的转换代码:链接

  • 划分数据集代码见:链接

4.预训练模型

如果未改变网络结构,则可以加载官方在COCO数据集上训练好的预训练模型,加快网络的收敛速度,下载相应的目标检测预训练模型并导入预训练模型,下载链接:链接

5.配置参数
  • 配置数据集路径,类别等(data.yaml文件)
  • 训练轮次(epoch)
  • 批次(batchsize)
  • 数据增广等超参数...
6.开始训练

创建train.py文件,复制以下代码运行

python 复制代码
from ultralytics import YOLO
if __name__ == '__main__':
    # 加载模型
    model = YOLO("ultralytics/ultralytics/cfg/models/v8/yolov8n.yaml")
    # 加载预训练权重
    model.load("yolov8n")
    # 训练模型
    results = model.train(data="ultralytics/data/data.yaml",  
                          resume=True,
                          epochs=100,
                          project='train',
                          patience=30,
                          name='exp',
                          amp=False)
7.开始推理

创建val.py文件,复制以下代码运行

python 复制代码
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('runs/train/exp/weights/best.pt')
    model.val(data='dataset/data.yaml',
              split='test',
              imgsz=640,
              batch=1,
              project='runs/val',
              name='exp',
              )
8.开始预测

创建detect.py文件,复制以下代码运行。如果需要对预测的结果进行一些处理,则需要知道预测的结果张量中代表的含义,参考链接如下:链接

python 复制代码
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('runs/train/exp/weights/best.pt') # select your model.pt path
    model.predict(source='dataset/images/test',
                  project='runs/detect',
                  name='exp',
                  save=True, 
                  )
相关推荐
掘金安东尼27 分钟前
Google+禁用“一次性抓取100条搜索结果”,SEO迎来变革?
人工智能
FIN666833 分钟前
射频技术领域的领航者,昂瑞微IPO即将上会审议
前端·人工智能·前端框架·信息与通信
小麦矩阵系统永久免费44 分钟前
短视频矩阵系统哪个好用?2025最新评测与推荐|小麦矩阵系统
大数据·人工智能·矩阵
Mr.Lee jack1 小时前
【vLLM】源码解读:高性能大语言模型推理引擎的工程设计与实现
人工智能·语言模型·自然语言处理
IT_陈寒1 小时前
Java性能优化:这5个Spring Boot隐藏技巧让你的应用提速40%
前端·人工智能·后端
MicroTech20251 小时前
微算法科技(NASDAQ:MLGO)开发延迟和隐私感知卷积神经网络分布式推理,助力可靠人工智能系统技术
人工智能·科技·算法
喜欢吃豆1 小时前
多轮智能对话系统架构方案(可实战):从基础模型到自我优化的对话智能体,数据飞轮的重要性
人工智能·语言模型·自然语言处理·系统架构·大模型·多轮智能对话系统
文火冰糖的硅基工坊1 小时前
[嵌入式系统-83]:算力芯片的类型与主流架构
人工智能·重构·架构
视觉语言导航3 小时前
ICRA-2025 | 阿德莱德机器人拓扑导航探索!TANGO:具有局部度量控制的拓扑目标可穿越性感知具身导航
人工智能·机器人·具身智能
西猫雷婶8 小时前
CNN卷积计算
人工智能·神经网络·cnn