目标检测——YOLOv8训练自己的数据集

1.下载YOLOv8源代码

下载链接

2. 配置环境
bash 复制代码
conda create -n yolov8 python=3.8
conda activate yolov8
pip install -r requirements.txt
pip install -e .

无需执行下面这步!

bash 复制代码
pip freeze > requirements.txt # 导出conda环境中相关的包
3. 数据集准备

数据集标签的格式标注为yolo的txt格式,在labelimg选择YOLO即可,然后进行标注,最后把数据集划分为训练集,验证集,(测试集)即可

  • 非yolo的txt格式,需进行数据集格式转换,相应的转换代码:链接

  • 划分数据集代码见:链接

4.预训练模型

如果未改变网络结构,则可以加载官方在COCO数据集上训练好的预训练模型,加快网络的收敛速度,下载相应的目标检测预训练模型并导入预训练模型,下载链接:链接

5.配置参数
  • 配置数据集路径,类别等(data.yaml文件)
  • 训练轮次(epoch)
  • 批次(batchsize)
  • 数据增广等超参数...
6.开始训练

创建train.py文件,复制以下代码运行

python 复制代码
from ultralytics import YOLO
if __name__ == '__main__':
    # 加载模型
    model = YOLO("ultralytics/ultralytics/cfg/models/v8/yolov8n.yaml")
    # 加载预训练权重
    model.load("yolov8n")
    # 训练模型
    results = model.train(data="ultralytics/data/data.yaml",  
                          resume=True,
                          epochs=100,
                          project='train',
                          patience=30,
                          name='exp',
                          amp=False)
7.开始推理

创建val.py文件,复制以下代码运行

python 复制代码
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('runs/train/exp/weights/best.pt')
    model.val(data='dataset/data.yaml',
              split='test',
              imgsz=640,
              batch=1,
              project='runs/val',
              name='exp',
              )
8.开始预测

创建detect.py文件,复制以下代码运行。如果需要对预测的结果进行一些处理,则需要知道预测的结果张量中代表的含义,参考链接如下:链接

python 复制代码
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('runs/train/exp/weights/best.pt') # select your model.pt path
    model.predict(source='dataset/images/test',
                  project='runs/detect',
                  name='exp',
                  save=True, 
                  )
相关推荐
Tiny_React3 分钟前
Claude Code Skills 自优化架构设计
人工智能·设计模式
老兵发新帖3 分钟前
基于Label Studio的视频标注与YOLO模型训练全流程指南
python·yolo·音视频
彼岸花开了吗4 分钟前
构建AI智能体:八十二、潜藏秩序的发现:隐因子视角下的SVD推荐知识提取与机理阐释
人工智能·llm
努力犯错玩AI4 分钟前
如何在ComfyUI中使用Qwen-Image-Layered GGUF:完整安装和使用指南
前端·人工智能
张彦峰ZYF6 分钟前
生成式大模型的风险与治理:从技术隐患到合规落地的系统性分析
人工智能·内容安全·知识产权·模型安全·生成式大模型的风险与治理·个人信息合规治理·生成式人工智能服务管理暂行办法
明明如月学长6 分钟前
非技术人员也能轻松使用 Claude Code?Zed,让 AI 办公像记事本一样丝滑
人工智能
SamtecChina20238 分钟前
Electronica现场演示 | 严苛环境下的56G互连
大数据·网络·人工智能·算法·计算机外设
IT_陈寒11 分钟前
SpringBoot 3.x实战:5个高效开发技巧让我减少了40%重复代码
前端·人工智能·后端
格林威12 分钟前
印刷电路板阻焊层缺失识别:防止短路风险的 7 个核心策略,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·机器学习·计算机视觉·视觉检测·工业相机
Gofarlic_OMS15 分钟前
ANSYS许可证使用合规性报告自动化生成方案
大数据·运维·人工智能·3d·自动化·云计算