目标检测——YOLOv8训练自己的数据集

1.下载YOLOv8源代码

下载链接

2. 配置环境
bash 复制代码
conda create -n yolov8 python=3.8
conda activate yolov8
pip install -r requirements.txt
pip install -e .

无需执行下面这步!

bash 复制代码
pip freeze > requirements.txt # 导出conda环境中相关的包
3. 数据集准备

数据集标签的格式标注为yolo的txt格式,在labelimg选择YOLO即可,然后进行标注,最后把数据集划分为训练集,验证集,(测试集)即可

  • 非yolo的txt格式,需进行数据集格式转换,相应的转换代码:链接

  • 划分数据集代码见:链接

4.预训练模型

如果未改变网络结构,则可以加载官方在COCO数据集上训练好的预训练模型,加快网络的收敛速度,下载相应的目标检测预训练模型并导入预训练模型,下载链接:链接

5.配置参数
  • 配置数据集路径,类别等(data.yaml文件)
  • 训练轮次(epoch)
  • 批次(batchsize)
  • 数据增广等超参数...
6.开始训练

创建train.py文件,复制以下代码运行

python 复制代码
from ultralytics import YOLO
if __name__ == '__main__':
    # 加载模型
    model = YOLO("ultralytics/ultralytics/cfg/models/v8/yolov8n.yaml")
    # 加载预训练权重
    model.load("yolov8n")
    # 训练模型
    results = model.train(data="ultralytics/data/data.yaml",  
                          resume=True,
                          epochs=100,
                          project='train',
                          patience=30,
                          name='exp',
                          amp=False)
7.开始推理

创建val.py文件,复制以下代码运行

python 复制代码
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('runs/train/exp/weights/best.pt')
    model.val(data='dataset/data.yaml',
              split='test',
              imgsz=640,
              batch=1,
              project='runs/val',
              name='exp',
              )
8.开始预测

创建detect.py文件,复制以下代码运行。如果需要对预测的结果进行一些处理,则需要知道预测的结果张量中代表的含义,参考链接如下:链接

python 复制代码
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('runs/train/exp/weights/best.pt') # select your model.pt path
    model.predict(source='dataset/images/test',
                  project='runs/detect',
                  name='exp',
                  save=True, 
                  )
相关推荐
码银7 分钟前
冲破AI 浪潮冲击下的 迷茫与焦虑
人工智能
何大春10 分钟前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式
uncle_ll18 分钟前
PyTorch图像预处理:计算均值和方差以实现标准化
图像处理·人工智能·pytorch·均值算法·标准化
宋1381027972018 分钟前
Manus Xsens Metagloves虚拟现实手套
人工智能·机器人·vr·动作捕捉
SEVEN-YEARS22 分钟前
深入理解TensorFlow中的形状处理函数
人工智能·python·tensorflow
世优科技虚拟人26 分钟前
AI、VR与空间计算:教育和文旅领域的数字转型力量
人工智能·vr·空间计算
cloud studio AI应用32 分钟前
腾讯云 AI 代码助手:产品研发过程的思考和方法论
人工智能·云计算·腾讯云
Suyuoa38 分钟前
附录2-pytorch yolov5目标检测
python·深度学习·yolo
禁默43 分钟前
第六届机器人、智能控制与人工智能国际学术会议(RICAI 2024)
人工智能·机器人·智能控制
Robot2511 小时前
浅谈,华为切入具身智能赛道
人工智能