【扒网络架构】backbone、ccff

backbone

CCFF

还不知道网络连接方式,只是知道了每一层

backbone

  1. backbone.backbone.conv1.weight torch.Size([64, 3, 7, 7])
  2. backbone.backbone.layer1.0.conv1.weight torch.Size([64, 64, 1, 1])
  3. backbone.backbone.layer1.0.conv2.weight torch.Size([64, 64, 3, 3])
  4. backbone.backbone.layer1.0.conv3.weight torch.Size([256, 64, 1, 1])
  5. backbone.backbone.layer1.0.downsample.0.weight torch.Size([256, 64, 1, 1])
  6. backbone.backbone.layer1.1.conv1.weight torch.Size([64, 256, 1, 1])
  7. backbone.backbone.layer1.1.conv2.weight torch.Size([64, 64, 3, 3])
  8. backbone.backbone.layer1.1.conv3.weight torch.Size([256, 64, 1, 1])
  9. backbone.backbone.layer1.2.conv1.weight torch.Size([64, 256, 1, 1])
  10. backbone.backbone.layer1.2.conv2.weight torch.Size([64, 64, 3, 3])
  11. backbone.backbone.layer1.2.conv3.weight torch.Size([256, 64, 1, 1])
  12. backbone.backbone.layer2.0.conv1.weight torch.Size([128, 256, 1, 1])
  13. backbone.backbone.layer2.0.conv2.weight torch.Size([128, 128, 3, 3])
  14. backbone.backbone.layer2.0.conv3.weight torch.Size([512, 128, 1, 1])
  15. backbone.backbone.layer2.0.downsample.0.weight torch.Size([512, 256, 1, 1])
  16. backbone.backbone.layer2.1.conv1.weight torch.Size([128, 512, 1, 1])
  17. backbone.backbone.layer2.1.conv2.weight torch.Size([128, 128, 3, 3])
  18. backbone.backbone.layer2.1.conv3.weight torch.Size([512, 128, 1, 1])
  19. backbone.backbone.layer2.2.conv1.weight torch.Size([128, 512, 1, 1])
  20. backbone.backbone.layer2.2.conv2.weight torch.Size([128, 128, 3, 3])
  21. backbone.backbone.layer2.2.conv3.weight torch.Size([512, 128, 1, 1])
  22. backbone.backbone.layer2.3.conv1.weight torch.Size([128, 512, 1, 1])
  23. backbone.backbone.layer2.3.conv2.weight torch.Size([128, 128, 3, 3])
  24. backbone.backbone.layer2.3.conv3.weight torch.Size([512, 128, 1, 1])
  25. backbone.backbone.layer3.0.conv1.weight torch.Size([256, 512, 1, 1])
  26. backbone.backbone.layer3.0.conv2.weight torch.Size([256, 256, 3, 3])
  27. backbone.backbone.layer3.0.conv3.weight torch.Size([1024, 256, 1, 1])
  28. backbone.backbone.layer3.0.downsample.0.weight torch.Size([1024, 512, 1, 1])
  29. backbone.backbone.layer3.1.conv1.weight torch.Size([256, 1024, 1, 1])
  30. backbone.backbone.layer3.1.conv2.weight torch.Size([256, 256, 3, 3])
  31. backbone.backbone.layer3.1.conv3.weight torch.Size([1024, 256, 1, 1])
  32. backbone.backbone.layer3.2.conv1.weight torch.Size([256, 1024, 1, 1])
  33. backbone.backbone.layer3.2.conv2.weight torch.Size([256, 256, 3, 3])
  34. backbone.backbone.layer3.2.conv3.weight torch.Size([1024, 256, 1, 1])
  35. backbone.backbone.layer3.3.conv1.weight torch.Size([256, 1024, 1, 1])
  36. backbone.backbone.layer3.3.conv2.weight torch.Size([256, 256, 3, 3])
  37. backbone.backbone.layer3.3.conv3.weight torch.Size([1024, 256, 1, 1])
  38. backbone.backbone.layer3.4.conv1.weight torch.Size([256, 1024, 1, 1])
  39. backbone.backbone.layer3.4.conv2.weight torch.Size([256, 256, 3, 3])
  40. backbone.backbone.layer3.4.conv3.weight torch.Size([1024, 256, 1, 1])
  41. backbone.backbone.layer3.5.conv1.weight torch.Size([256, 1024, 1, 1])
  42. backbone.backbone.layer3.5.conv2.weight torch.Size([256, 256, 3, 3])
  43. backbone.backbone.layer3.5.conv3.weight torch.Size([1024, 256, 1, 1])
  44. backbone.backbone.layer4.0.conv1.weight torch.Size([512, 1024, 1, 1])
  45. backbone.backbone.layer4.0.conv2.weight torch.Size([512, 512, 3, 3])
  46. backbone.backbone.layer4.0.conv3.weight torch.Size([2048, 512, 1, 1])
  47. backbone.backbone.layer4.0.downsample.0.weight torch.Size([2048, 1024, 1, 1])
  48. backbone.backbone.layer4.1.conv1.weight torch.Size([512, 2048, 1, 1])
  49. backbone.backbone.layer4.1.conv2.weight torch.Size([512, 512, 3, 3])
  50. backbone.backbone.layer4.1.conv3.weight torch.Size([2048, 512, 1, 1])
  51. backbone.backbone.layer4.2.conv1.weight torch.Size([512, 2048, 1, 1])
  52. backbone.backbone.layer4.2.conv2.weight torch.Size([512, 512, 3, 3])
  53. backbone.backbone.layer4.2.conv3.weight torch.Size([2048, 512, 1, 1])
  54. backbone.backbone.fc.weight torch.Size([1000, 2048])
  55. backbone.backbone.fc.bias torch.Size([1000])

ccf

  1. ccff.conv1.conv.weight torch.Size([3584, 3584, 1, 1])
  2. ccff.conv1.norm.weight torch.Size([3584])
  3. ccff.conv1.norm.bias torch.Size([3584])
  4. ccff.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
  5. ccff.conv2.norm.weight torch.Size([3584])
  6. ccff.conv2.norm.bias torch.Size([3584])
  7. ccff.bottlenecks.0.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
  8. ccff.bottlenecks.0.conv1.norm.weight torch.Size([3584])
  9. ccff.bottlenecks.0.conv1.norm.bias torch.Size([3584])
  10. ccff.bottlenecks.0.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
  11. ccff.bottlenecks.0.conv2.norm.weight torch.Size([3584])
  12. ccff.bottlenecks.0.conv2.norm.bias torch.Size([3584])
  13. ccff.bottlenecks.1.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
  14. ccff.bottlenecks.1.conv1.norm.weight torch.Size([3584])
  15. ccff.bottlenecks.1.conv1.norm.bias torch.Size([3584])
  16. ccff.bottlenecks.1.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
  17. ccff.bottlenecks.1.conv2.norm.weight torch.Size([3584])
  18. ccff.bottlenecks.1.conv2.norm.bias torch.Size([3584])
  19. ccff.bottlenecks.2.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
  20. ccff.bottlenecks.2.conv1.norm.weight torch.Size([3584])
  21. ccff.bottlenecks.2.conv1.norm.bias torch.Size([3584])
  22. ccff.bottlenecks.2.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
  23. ccff.bottlenecks.2.conv2.norm.weight torch.Size([3584])
  24. ccff.bottlenecks.2.conv2.norm.bias torch.Size([3584])

input_proj

  1. input_proj.weight torch.Size([256, 3584, 1, 1])
  2. input_proj.bias torch.Size([256])

encoder

  1. encoder.layers.0.norm1.weight torch.Size([256])
  2. encoder.layers.0.norm1.bias torch.Size([256])
  3. encoder.layers.0.norm2.weight torch.Size([256])
  4. encoder.layers.0.norm2.bias torch.Size([256])
  5. encoder.layers.0.self_attn.in_proj_weight torch.Size([768, 256])
  6. encoder.layers.0.self_attn.in_proj_bias torch.Size([768])
  7. encoder.layers.0.self_attn.out_proj.weight torch.Size([256, 256])
  8. encoder.layers.0.self_attn.out_proj.bias torch.Size([256])
  9. encoder.layers.0.mlp.linear1.weight torch.Size([2048, 256])
  10. encoder.layers.0.mlp.linear1.bias torch.Size([2048])
  11. encoder.layers.0.mlp.linear2.weight torch.Size([256, 2048])
  12. encoder.layers.0.mlp.linear2.bias torch.Size([256])
  13. encoder.layers.1.norm1.weight torch.Size([256])
  14. encoder.layers.1.norm1.bias torch.Size([256])
  15. encoder.layers.1.norm2.weight torch.Size([256])
  16. encoder.layers.1.norm2.bias torch.Size([256])
  17. encoder.layers.1.self_attn.in_proj_weight torch.Size([768, 256])
  18. encoder.layers.1.self_attn.in_proj_bias torch.Size([768])
  19. encoder.layers.1.self_attn.out_proj.weight torch.Size([256, 256])
  20. encoder.layers.1.self_attn.out_proj.bias torch.Size([256])
  21. encoder.layers.1.mlp.linear1.weight torch.Size([2048, 256])
  22. encoder.layers.1.mlp.linear1.bias torch.Size([2048])
  23. encoder.layers.1.mlp.linear2.weight torch.Size([256, 2048])
  24. encoder.layers.1.mlp.linear2.bias torch.Size([256])
  25. encoder.layers.2.norm1.weight torch.Size([256])
  26. encoder.layers.2.norm1.bias torch.Size([256])
  27. encoder.layers.2.norm2.weight torch.Size([256])
  28. encoder.layers.2.norm2.bias torch.Size([256])
  29. encoder.layers.2.self_attn.in_proj_weight torch.Size([768, 256])
  30. encoder.layers.2.self_attn.in_proj_bias torch.Size([768])
  31. encoder.layers.2.self_attn.out_proj.weight torch.Size([256, 256])
  32. encoder.layers.2.self_attn.out_proj.bias torch.Size([256])
  33. encoder.layers.2.mlp.linear1.weight torch.Size([2048, 256])
  34. encoder.layers.2.mlp.linear1.bias torch.Size([2048])
  35. encoder.layers.2.mlp.linear2.weight torch.Size([256, 2048])
  36. encoder.layers.2.mlp.linear2.bias torch.Size([256])
  37. encoder.norm.weight torch.Size([256])
  38. encoder.norm.bias torch.Size([256])

ope

  1. ope.iterative_adaptation.layers.0.norm1.weight torch.Size([256])
  2. ope.iterative_adaptation.layers.0.norm1.bias torch.Size([256])
  3. ope.iterative_adaptation.layers.0.norm2.weight torch.Size([256])
  4. ope.iterative_adaptation.layers.0.norm2.bias torch.Size([256])
  5. ope.iterative_adaptation.layers.0.norm3.weight torch.Size([256])
  6. ope.iterative_adaptation.layers.0.norm3.bias torch.Size([256])
  7. ope.iterative_adaptation.layers.0.self_attn.in_proj_weight torch.Size([768, 256])
  8. ope.iterative_adaptation.layers.0.self_attn.in_proj_bias torch.Size([768])
  9. ope.iterative_adaptation.layers.0.self_attn.out_proj.weight torch.Size([256, 256])
  10. ope.iterative_adaptation.layers.0.self_attn.out_proj.bias torch.Size([256])
  11. ope.iterative_adaptation.layers.0.enc_dec_attn.in_proj_weight torch.Size([768, 256])
  12. ope.iterative_adaptation.layers.0.enc_dec_attn.in_proj_bias torch.Size([768])
  13. ope.iterative_adaptation.layers.0.enc_dec_attn.out_proj.weight torch.Size([256, 256])
  14. ope.iterative_adaptation.layers.0.enc_dec_attn.out_proj.bias torch.Size([256])
  15. ope.iterative_adaptation.layers.0.mlp.linear1.weight torch.Size([2048, 256])
  16. ope.iterative_adaptation.layers.0.mlp.linear1.bias torch.Size([2048])
  17. ope.iterative_adaptation.layers.0.mlp.linear2.weight torch.Size([256, 2048])
  18. ope.iterative_adaptation.layers.0.mlp.linear2.bias torch.Size([256])
  19. ope.iterative_adaptation.layers.1.norm1.weight torch.Size([256])
  20. ope.iterative_adaptation.layers.1.norm1.bias torch.Size([256])
  21. ope.iterative_adaptation.layers.1.norm2.weight torch.Size([256])
  22. ope.iterative_adaptation.layers.1.norm2.bias torch.Size([256])
  23. ope.iterative_adaptation.layers.1.norm3.weight torch.Size([256])
  24. ope.iterative_adaptation.layers.1.norm3.bias torch.Size([256])
  25. ope.iterative_adaptation.layers.1.self_attn.in_proj_weight torch.Size([768, 256])
  26. ope.iterative_adaptation.layers.1.self_attn.in_proj_bias torch.Size([768])
  27. ope.iterative_adaptation.layers.1.self_attn.out_proj.weight torch.Size([256, 256])
  28. ope.iterative_adaptation.layers.1.self_attn.out_proj.bias torch.Size([256])
  29. ope.iterative_adaptation.layers.1.enc_dec_attn.in_proj_weight torch.Size([768, 256])
  30. ope.iterative_adaptation.layers.1.enc_dec_attn.in_proj_bias torch.Size([768])
  31. ope.iterative_adaptation.layers.1.enc_dec_attn.out_proj.weight torch.Size([256, 256])
  32. ope.iterative_adaptation.layers.1.enc_dec_attn.out_proj.bias torch.Size([256])
  33. ope.iterative_adaptation.layers.1.mlp.linear1.weight torch.Size([2048, 256])
  34. ope.iterative_adaptation.layers.1.mlp.linear1.bias torch.Size([2048])
  35. ope.iterative_adaptation.layers.1.mlp.linear2.weight torch.Size([256, 2048])
  36. ope.iterative_adaptation.layers.1.mlp.linear2.bias torch.Size([256])
  37. ope.iterative_adaptation.layers.2.norm1.weight torch.Size([256])
  38. ope.iterative_adaptation.layers.2.norm1.bias torch.Size([256])
  39. ope.iterative_adaptation.layers.2.norm2.weight torch.Size([256])
  40. ope.iterative_adaptation.layers.2.norm2.bias torch.Size([256])
  41. ope.iterative_adaptation.layers.2.norm3.weight torch.Size([256])
  42. ope.iterative_adaptation.layers.2.norm3.bias torch.Size([256])
  43. ope.iterative_adaptation.layers.2.self_attn.in_proj_weight torch.Size([768, 256])
  44. ope.iterative_adaptation.layers.2.self_attn.in_proj_bias torch.Size([768])
  45. ope.iterative_adaptation.layers.2.self_attn.out_proj.weight torch.Size([256, 256])
  46. ope.iterative_adaptation.layers.2.self_attn.out_proj.bias torch.Size([256])
  47. ope.iterative_adaptation.layers.2.enc_dec_attn.in_proj_weight torch.Size([768, 256])
  48. ope.iterative_adaptation.layers.2.enc_dec_attn.in_proj_bias torch.Size([768])
  49. ope.iterative_adaptation.layers.2.enc_dec_attn.out_proj.weight torch.Size([256, 256])
  50. ope.iterative_adaptation.layers.2.enc_dec_attn.out_proj.bias torch.Size([256])
  51. ope.iterative_adaptation.layers.2.mlp.linear1.weight torch.Size([2048, 256])
  52. ope.iterative_adaptation.layers.2.mlp.linear1.bias torch.Size([2048])
  53. ope.iterative_adaptation.layers.2.mlp.linear2.weight torch.Size([256, 2048])
  54. ope.iterative_adaptation.layers.2.mlp.linear2.bias torch.Size([256])
  55. ope.iterative_adaptation.norm.weight torch.Size([256])
  56. ope.iterative_adaptation.norm.bias torch.Size([256])

ope.shape_or_objectness

  1. ope.shape_or_objectness.0.weight torch.Size([64, 2])
  2. ope.shape_or_objectness.0.bias torch.Size([64])
  3. ope.shape_or_objectness.2.weight torch.Size([256, 64])
  4. ope.shape_or_objectness.2.bias torch.Size([256])
  5. ope.shape_or_objectness.4.weight torch.Size([2304, 256])
  6. ope.shape_or_objectness.4.bias torch.Size([2304])

回归头

  1. regression_head.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
  2. regression_head.regressor.0.layer.0.bias torch.Size([128])
  3. regression_head.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
  4. regression_head.regressor.1.layer.0.bias torch.Size([64])
  5. regression_head.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
  6. regression_head.regressor.2.layer.0.bias torch.Size([32])
  7. regression_head.regressor.3.weight torch.Size([1, 32, 1, 1])
  8. regression_head.regressor.3.bias torch.Size([1])

辅助头

  1. aux_heads.0.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
  2. aux_heads.0.regressor.0.layer.0.bias torch.Size([128])
  3. aux_heads.0.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
  4. aux_heads.0.regressor.1.layer.0.bias torch.Size([64])
  5. aux_heads.0.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
  6. aux_heads.0.regressor.2.layer.0.bias torch.Size([32])
  7. aux_heads.0.regressor.3.weight torch.Size([1, 32, 1, 1])
  8. aux_heads.0.regressor.3.bias torch.Size([1])
  9. aux_heads.1.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
  10. aux_heads.1.regressor.0.layer.0.bias torch.Size([128])
  11. aux_heads.1.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
  12. aux_heads.1.regressor.1.layer.0.bias torch.Size([64])
  13. aux_heads.1.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
  14. aux_heads.1.regressor.2.layer.0.bias torch.Size([32])
  15. aux_heads.1.regressor.3.weight torch.Size([1, 32, 1, 1])
  16. aux_heads.1.regressor.3.bias torch.Size([1])

Total number of parameters in LOCA: 447974251

Total number of parameters in CCFF: 411099136(这个模块,参数量好大)

相关推荐
千天夜8 分钟前
使用UDP协议传输视频流!(分片、缓存)
python·网络协议·udp·视频流
测试界的酸菜鱼12 分钟前
Python 大数据展示屏实例
大数据·开发语言·python
羊小猪~~16 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
放飞自我的Coder1 小时前
【python ROUGE BLEU jiaba.cut NLP常用的指标计算】
python·自然语言处理·bleu·rouge·jieba分词
正义的彬彬侠1 小时前
【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价
python·机器学习·sklearn
张小生1801 小时前
PyCharm中 argparse 库 的使用方法
python·pycharm
秃头佛爷1 小时前
Python使用PDF相关组件案例详解
python
Dxy12393102161 小时前
python下载pdf
数据库·python·pdf
叶知安1 小时前
如何用pycharm连接sagemath?
ide·python·pycharm
weixin_432702262 小时前
代码随想录算法训练营第五十五天|图论理论基础
数据结构·python·算法·深度优先·图论