论文笔记:OneBit: Towards Extremely Low-bit Large Language Models

202402 arxiv

1 背景

  • 模型量化主要通过把模型的线性层【nn.Linear】(Embedding 层和 Lm_head 层除外)转化为低精度表示实现空间压缩
    • 此前工作的基础是利用 Round-To-Nearest(RTN)方法把高精度浮点数近似映射到附近的整数网格
    • 然而基于 RTN 的方法在极低位宽时(3bit 以下)存在严重的精度损失问题,量化后的模型能力损失十分严重
    • 基于 RTN 的量化方法在 1bit 量化时几乎失效,难以有效地保留原模型的性能。
  • ------>论文提出OneBit 框架,包括全新的 1bit 层结构、基于 SVID 的参数初始化方法和基于量化感知知识蒸馏的知识迁移

2 论文方法

2.1 1bit 结构

  • OneBit 的终极目标是将 LLMs 的权重矩阵压缩到 1bit。
  • 真正的 1bit 要求每个权重值只能用 1bit 表示,即只有两种可能的状态。
    • 论文认为,在大模型的参数中,有两个重要因素都必须被考虑进来
      • 浮点数的高精度
      • 参数矩阵的高秩
    • ------>引入两个 FP16 格式的值向量以补偿由于量化导致的精度损失
      • 不仅保持了原始权重矩阵的高秩
      • 还通过值向量提供了必要的浮点精度,有助于模型的训练和知识迁移
  • 假设对一个 4096*4096 的线性层进行压缩
    • OneBit 需要一个 4096*4096 的 1bit 矩阵,和两个 4096*1 的 16bit 值向量
    • ------>总的位数为 16,908,288,总的参数个数为 16,785,408,平均每个参数占用仅仅约 1.0073 个 bit

2.2 基于 SVID 初始化量化模型

  • 为了使用充分训练好的原模型更好地初始化量化后的模型,进而促进更好的知识迁移效果,论文提出一种新的参数矩阵分解方法
    • 值 - 符号独立的矩阵分解(SVID)
      • 把符号和绝对值分开,并把绝对值进行秩 - 1 近似
        • 秩 - 1 近似可以通过常见的矩阵分解方式实现,例如奇异值分解(SVD)和非负矩阵分解(NMF)

2.3 通过知识蒸馏迁移原模型能力

  • 通过知识蒸馏从未量化模型(教师网络)中学习,实现能力向 量化模型(学生网络)的迁移

3 实验

3.1 效果

  • 从 1.3B 到 13B 不同大小、OPT 和 LLaMA-1/2 不同系列的模型来证明 OneBit 的有效性

3/2 效率

相关推荐
TGITCIC1 小时前
AI Agent竞争进入下半场:模型只是入场券,系统架构决定胜负
人工智能·ai产品经理·ai产品·ai落地·大模型架构·ai架构·大模型产品
斐夷所非4 小时前
人工智能 AI. 机器学习 ML. 深度学习 DL. 神经网络 NN 的区别与联系
人工智能
Funny_AI_LAB5 小时前
OpenAI DevDay 2025:ChatGPT 进化为平台,开启 AI 应用新纪元
人工智能·ai·语言模型·chatgpt
深瞳智检5 小时前
YOLO算法原理详解系列 第002期-YOLOv2 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
深眸财经6 小时前
机器人再冲港交所,优艾智合能否破行业困局?
人工智能·机器人
小宁爱Python6 小时前
从零搭建 RAG 智能问答系统1:基于 LlamaIndex 与 Chainlit实现最简单的聊天助手
人工智能·后端·python
新知图书7 小时前
Encoder-Decoder架构的模型简介
人工智能·架构·ai agent·智能体·大模型应用开发·大模型应用
大模型真好玩7 小时前
低代码Agent开发框架使用指南(一)—主流开发框架对比介绍
人工智能·低代码·agent
tzc_fly7 小时前
AI作为操作系统已经不能阻挡了,尽管它还没来
人工智能·chatgpt
PKNLP8 小时前
深度学习之神经网络1(Neural Network)
人工智能·深度学习·神经网络