论文笔记:OneBit: Towards Extremely Low-bit Large Language Models

202402 arxiv

1 背景

  • 模型量化主要通过把模型的线性层【nn.Linear】(Embedding 层和 Lm_head 层除外)转化为低精度表示实现空间压缩
    • 此前工作的基础是利用 Round-To-Nearest(RTN)方法把高精度浮点数近似映射到附近的整数网格
    • 然而基于 RTN 的方法在极低位宽时(3bit 以下)存在严重的精度损失问题,量化后的模型能力损失十分严重
    • 基于 RTN 的量化方法在 1bit 量化时几乎失效,难以有效地保留原模型的性能。
  • ------>论文提出OneBit 框架,包括全新的 1bit 层结构、基于 SVID 的参数初始化方法和基于量化感知知识蒸馏的知识迁移

2 论文方法

2.1 1bit 结构

  • OneBit 的终极目标是将 LLMs 的权重矩阵压缩到 1bit。
  • 真正的 1bit 要求每个权重值只能用 1bit 表示,即只有两种可能的状态。
    • 论文认为,在大模型的参数中,有两个重要因素都必须被考虑进来
      • 浮点数的高精度
      • 参数矩阵的高秩
    • ------>引入两个 FP16 格式的值向量以补偿由于量化导致的精度损失
      • 不仅保持了原始权重矩阵的高秩
      • 还通过值向量提供了必要的浮点精度,有助于模型的训练和知识迁移
  • 假设对一个 4096*4096 的线性层进行压缩
    • OneBit 需要一个 4096*4096 的 1bit 矩阵,和两个 4096*1 的 16bit 值向量
    • ------>总的位数为 16,908,288,总的参数个数为 16,785,408,平均每个参数占用仅仅约 1.0073 个 bit

2.2 基于 SVID 初始化量化模型

  • 为了使用充分训练好的原模型更好地初始化量化后的模型,进而促进更好的知识迁移效果,论文提出一种新的参数矩阵分解方法
    • 值 - 符号独立的矩阵分解(SVID)
      • 把符号和绝对值分开,并把绝对值进行秩 - 1 近似
        • 秩 - 1 近似可以通过常见的矩阵分解方式实现,例如奇异值分解(SVD)和非负矩阵分解(NMF)

2.3 通过知识蒸馏迁移原模型能力

  • 通过知识蒸馏从未量化模型(教师网络)中学习,实现能力向 量化模型(学生网络)的迁移

3 实验

3.1 效果

  • 从 1.3B 到 13B 不同大小、OPT 和 LLaMA-1/2 不同系列的模型来证明 OneBit 的有效性

3/2 效率

相关推荐
程序猿追几秒前
深度解读 AIR (AI Runtime):揭秘 CANN 极致算力编排与调度的核心引擎
人工智能
2601_949593655 分钟前
深入解析CANN-acl应用层接口:构建高效的AI应用开发框架
数据库·人工智能
●VON8 分钟前
CANN安全与隐私:从模型加固到数据合规的全栈防护实战
人工智能·安全
kjkdd10 分钟前
6.1 核心组件(Agent)
python·ai·语言模型·langchain·ai编程
刘大大Leo14 分钟前
GPT-5.3-Codex 炸了:第一个「自己造自己」的 AI 编程模型,到底意味着什么?
人工智能·gpt
小镇敲码人17 分钟前
剖析CANN框架中Samples仓库:从示例到实战的AI开发指南
c++·人工智能·python·华为·acl·cann
摘星编程24 分钟前
CANN ops-nn Pooling算子解读:CNN模型下采样与特征提取的核心
人工智能·神经网络·cnn
程序员清洒39 分钟前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全
island131442 分钟前
CANN ops-nn 算子库深度解析:神经网络计算引擎的底层架构、硬件映射与融合优化机制
人工智能·神经网络·架构
小白|1 小时前
CANN与实时音视频AI:构建低延迟智能通信系统的全栈实践
人工智能·实时音视频