使用torch普通算子组合替代torch.einsum爱因斯坦求和

1. torch.einsum('bnd, bmd->bnm', x, y)

torch.einsum('bnd, bmd->bnm', x, y) 表示的是对张量 x 和 y 进行特定的求和和维度变换。

具体来说,这个操作的输入是两个形状为 [b, n, d] 和 [b, m, d] 的张量 x 和 y,输出是一个形状为 [b, n, m] 的张量 z。其计算过程可以理解为:对于每个 b,z[b, n, m] 等于 x[b, n, :] 和 y[b, m, :] 之间的点积。

为了用普通的 torch 操作符来替代 einsum,我们可以通过 torch.matmul 函数实现。这个函数可以用来执行批量矩阵乘法,并且能够很好地替代这个 einsum 操作。

具体实现如下:

python 复制代码
import torch

# 假设 x 和 y 的形状分别为 (b, n, d) 和 (b, m, d)
x = torch.randn(10, 20, 30)  # 举例
y = torch.randn(10, 15, 30)  # 举例

# einsum: z = torch.einsum('bnd, bmd->bnm', x, y)
# 可以转换为以下操作:
z = torch.matmul(x, y.transpose(-1, -2))  # z 的形状为 (b, n, m)

# 检查 z 的形状是否正确
print(z.shape)

2. torch.einsum('ij,jk->ik', A, B)

可以用普通的矩阵乘法 torch.matmul 替代

具体实现如下:

python 复制代码
import torch

A = torch.rand(3, 4)
B = torch.rand(4, 5)

# 使用 einsum
result_einsum = torch.einsum('ij,jk->ik', A, B)

# 使用 matmul
result_matmul = torch.matmul(A, B)

# 验证结果相同
print(torch.allclose(result_einsum, result_matmul))

3. torch.einsum('bij,bjk->bik', A, B)

可以用 torch.bmm 来替代

具体实现如下:

python 复制代码
import torch

A = torch.rand(10, 3, 4)
B = torch.rand(10, 4, 5)

# 使用 einsum
result_einsum = torch.einsum('bij,bjk->bik', A, B)

# 使用 bmm
result_bmm = torch.bmm(A, B)

# 验证结果相同
print(torch.allclose(result_einsum, result_bmm))

4. torch.einsum('i,i->', A, B)

向量内积,可以用 torch.dot 来替代

具体实现如下:

python 复制代码
import torch

A = torch.rand(4)
B = torch.rand(4)

# 使用 einsum
result_einsum = torch.einsum('i,i->', A, B)

# 使用 dot
result_dot = torch.dot(A, B)

# 验证结果相同
print(torch.allclose(result_einsum, result_dot))

5. torch.einsum('i,j->ij', A, B)

向量外积,可以用 torch.outer 来替代

具体实现如下:

python 复制代码
import torch

A = torch.rand(4)
B = torch.rand(5)

# 使用 einsum
result_einsum = torch.einsum('i,j->ij', A, B)

# 使用 outer
result_outer = torch.outer(A, B)

# 验证结果相同
print(torch.allclose(result_einsum, result_outer))

不同的 einsum 表达式会对应不同的替代操作,有时可能需要组合多个普通操作来达到相同的效果。如果某些 einsum 表达式太复杂,使用普通算子替代时会比较繁琐,此时建议继续使用 einsum,因为它不仅更简洁,而且通常性能优化得很好。
后续遇到其余需替换的 op 再进行更新

相关推荐
吕小明么30 分钟前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi
程序员shen1616111 小时前
抖音短视频saas矩阵源码系统开发所需掌握的技术
java·前端·数据库·python·算法
人人人人一样一样1 小时前
作业Python
python
CSBLOG1 小时前
深度学习试题及答案解析(一)
人工智能·深度学习
四口鲸鱼爱吃盐1 小时前
Pytorch | 利用VMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
四口鲸鱼爱吃盐2 小时前
Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
小陈phd2 小时前
深度学习之超分辨率算法——SRCNN
python·深度学习·tensorflow·卷积
CodeClimb2 小时前
【华为OD-E卷-简单的自动曝光 100分(python、java、c++、js、c)】
java·python·华为od
数据小小爬虫2 小时前
如何利用Python爬虫获取商品历史价格信息
开发语言·爬虫·python