常用的麦克劳林级数展开式(泰勒展开式)

n = 0 , 1 , 2 , ... 一般取到 x 的 3 ∼ 4 次方 n=0,1,2,\dots一般取到x的3\sim4次方 n=0,1,2,...一般取到x的3∼4次方

  • e x = 1 + x 1 ! + x 2 2 ! + ⋯ + x n n ! + ο ( x n ) e^x=1+\displaystyle\frac{x}{1!}+\frac{x^2}{2!}+⋯+\frac{x^n}{n!}+\omicron(x^n) ex=1+1!x+2!x2+⋯+n!xn+ο(xn)
  • ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 + ⋯ + ( − 1 ) n − 1 n x n + ο ( x n ) \ln{(1+x)}=x-\displaystyle\frac{x^2}{2}+\frac{x^3}{3}+⋯+\frac{(-1)^{n-1}}{n}x^n+\omicron(x^n) ln(1+x)=x−2x2+3x3+⋯+n(−1)n−1xn+ο(xn)
  • sin ⁡ x = x − x 3 3 ! + x 5 5 ! + ⋯ + ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 + ο ( x 2 n + 1 ) \sin x=x-\displaystyle\frac{x^3}{3!}+\frac{x^5}{5!}+⋯+\frac{(-1)^{n}}{(2n+1)!}x^{2n+1}+\omicron(x^{2n+1}) sinx=x−3!x3+5!x5+⋯+(2n+1)!(−1)nx2n+1+ο(x2n+1)
  • cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + ⋯ + ( − 1 ) n ( 2 n ) ! x 2 n + ο ( x 2 n ) \cos x=1-\displaystyle\frac{x^2}{2!}+\frac{x^4}{4!}+⋯+\frac{(-1)^{n}}{(2n)!}x^{2n}+\omicron(x^{2n}) cosx=1−2!x2+4!x4+⋯+(2n)!(−1)nx2n+ο(x2n)
  • t a n x = x + 1 3 x 3 + 1 5 x 5 + ⋯ + 1 2 n + 1 x 2 n + 1 + ο ( x 2 n + 1 ) tanx=x+\displaystyle\frac{1}{3}x^3+\frac{1}{5}x^5+\cdots+\frac{1}{2n+1}x^{2n+1}+\omicron(x^{2n+1}) tanx=x+31x3+51x5+⋯+2n+11x2n+1+ο(x2n+1)
    推导: ( tan ⁡ x − x ) ∼ 1 3 x 3 ∼ ( x − arctan ⁡ x ) ( x − sin ⁡ x ) ∼ 1 6 x 3 ∼ ( arcsin ⁡ x − x ) α ∼ β ⇒ α = β + ο ( β ) 得 tan ⁡ x = x + 1 3 x 3 + ο ( x 3 ) 同理 arctan ⁡ x , arcsin ⁡ x \begin{aligned} 推导:&(\tan x -x)\sim\displaystyle\frac{1}{3}x^3\sim(x-\arctan x)\\ &(x−\sin x) \sim\displaystyle\frac{1}{6}x^3 \sim (\arcsin x−x)\\ &\alpha \sim \beta \Rightarrow \alpha=\beta+\omicron(\beta)\\ &得\ \tan x=x+\displaystyle\frac{1}{3}x^3+\omicron(x^3)\\ &同理\ \arctan x,\arcsin x &&&&&&&&&&&&&&&&&&&&&&&&&&&&& \end{aligned} 推导:(tanx−x)∼31x3∼(x−arctanx)(x−sinx)∼61x3∼(arcsinx−x)α∼β⇒α=β+ο(β)得 tanx=x+31x3+ο(x3)同理 arctanx,arcsinx
  • 1 1 − x = 1 + x + x 2 + ⋯ + ο ( x n ) \displaystyle\frac{1}{1-x}=1+x+x^2+\cdots+\omicron(x^n) 1−x1=1+x+x2+⋯+ο(xn)
  • 1 1 + x = 1 − x + x 2 + ⋯ + ( − 1 ) n x n + ο ( x n ) \displaystyle\frac{1}{1+x}=1-x+x^2+\cdots+(-1)^nx^n+\omicron(x^n) 1+x1=1−x+x2+⋯+(−1)nxn+ο(xn)
  • ( 1 + x ) a = 1 + a 1 ! x + a ( a − 1 ) 2 ! x 2 + ⋯ + a ( a − 1 ) ⋯ ( a − n + 1 ) n ! x n + ο ( x n ) (1+x)^a=1+\displaystyle\frac{a}{1!}x+\frac{a(a-1)}{2!}x^2+\cdots+\frac{a(a-1)\cdots(a-n+1)}{n!}x^n+\omicron(x^n) (1+x)a=1+1!ax+2!a(a−1)x2+⋯+n!a(a−1)⋯(a−n+1)xn+ο(xn)
  • arcsin ⁡ x = x + 1 2 × x 3 3 + 1 × 3 2 × 4 × x 5 5 + o ( x 5 ) = x + x 3 6 + ο ( x 3 ) \arcsin x=x+\displaystyle\frac{1}{2}\times\frac{x^3}{3}+\frac{1\times3}{2\times4}\times\frac{x^5}{5}+o(x^5)=x+\frac{x^3}{6}+\omicron(x^3) arcsinx=x+21×3x3+2×41×3×5x5+o(x5)=x+6x3+ο(x3)
  • arctan ⁡ x = x − x 3 3 + x 5 5 + ⋯ + ( − 1 ) n 2 n + 1 x 2 n + 1 + ο ( x 2 n + 1 ) \arctan x=x-\displaystyle\frac{x^3}{3}+\frac{x^5}{5}+⋯+\frac{(-1)^{n}}{2n+1}x^{2n+1}+\omicron(x^{2n+1}) arctanx=x−3x3+5x5+⋯+2n+1(−1)nx2n+1+ο(x2n+1)
相关推荐
strongwyy6 分钟前
9、nRF52xx蓝牙学习(pca10056.h学习)
单片机·嵌入式硬件·学习
每天题库8 分钟前
2025 年江苏保安员职业资格考试经验分享
学习·安全·考试·题库·考证
viperrrrrrrrrr75 小时前
大数据学习(105)-Hbase
大数据·学习·hbase
行思理7 小时前
go语言应该如何学习
开发语言·学习·golang
oceanweave9 小时前
【k8s学习之CSI】理解 LVM 存储概念和相关操作
学习·容器·kubernetes
吴梓穆10 小时前
UE5学习笔记 FPS游戏制作43 UI材质
笔记·学习·ue5
学会870上岸华师11 小时前
c语言学习16——内存函数
c语言·开发语言·学习
XYN6111 小时前
【嵌入式面试】
笔记·python·单片机·嵌入式硬件·学习
啊哈哈哈哈哈啊哈哈11 小时前
R3打卡——tensorflow实现RNN心脏病预测
人工智能·深度学习·学习
KangkangLoveNLP11 小时前
深度探索:策略学习与神经网络在强化学习中的应用
人工智能·深度学习·神经网络·学习·机器学习·自然语言处理