008 | 基于RNN和LSTM的贵州茅台股票开盘价预测

基于RNN和LSTM的贵州茅台股票开盘价预测

项目简介:

本项目旨在通过使用Tushare下载贵州茅台的股票数据,并基于这些历史数据,使用TensorFlow 2.0实现循环神经网络(RNN)和长短期记忆网络(LSTM)来预测股票的开盘价。本项目提供了完整的数据获取、处理、模型构建和预测的流程。

项目步骤:

1. 数据获取

使用Tushare库获取贵州茅台的历史股票数据,包括开盘价、收盘价、最高价、最低价、成交量等。

python 复制代码
import tushare as ts

# 设置Tushare的token
ts.set_token('your_token_here')
pro = ts.pro_api()

# 获取贵州茅台的历史数据
df = pro.daily(ts_code='600519.SH', start_date='20100101', end_date='20230701')
df.to_csv('maotai.csv', index=False)

2. 数据处理

读取下载的CSV文件,处理日期格式,并准备好输入特征和目标值。

python 复制代码
import pandas as pd
import numpy as np

# 读取数据
df = pd.read_csv('maotai.csv')

# 按日期排序
df['trade_date'] = pd.to_datetime(df['trade_date'])
df = df.sort_values('trade_date')

# 准备输入特征和目标值
data = df['open'].values.reshape(-1, 1)

3. 构建RNN模型

使用TensorFlow 2.0构建RNN模型,并训练模型。

python 复制代码
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense

# 构建RNN模型
model = Sequential()
model.add(SimpleRNN(50, activation='relu', return_sequences=True, input_shape=(30, 1)))
model.add(SimpleRNN(50, activation='relu'))
model.add(Dense(1))

# 编译模型
model.compile(optimizer='adam', loss='mse')

# 训练模型
model.fit(X_train, y_train, epochs=50, batch_size=32)

4. 构建LSTM模型

使用TensorFlow 2.0构建LSTM模型,并训练模型。

python 复制代码
from tensorflow.keras.layers import LSTM

# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, activation='relu', return_sequences=True, input_shape=(30, 1)))
model.add(LSTM(50, activation='relu'))
model.add(Dense(1))

# 编译模型
model.compile(optimizer='adam', loss='mse')

# 训练模型
model.fit(X_train, y_train, epochs=50, batch_size=32)

5. 预测与评估

使用训练好的模型进行预测,并评估模型的效果。

python 复制代码
# 预测
predicted_stock_price = model.predict(X_test)

# 评估
mse = np.mean(np.square(predicted_stock_price - y_test))
print(f'Mean Squared Error: {mse}')

运行结果


项目结构

复制代码
├── data
│   ├── maotai.csv               // 下载的贵州茅台股票数据
├── models
│   ├── rnn_stock.py             // RNN模型代码
│   ├── lstm_stock.py            // LSTM模型代码
├── results
│   ├── rnn_predictions.csv      // RNN模型预测结果
│   ├── lstm_predictions.csv     // LSTM模型预测结果
└── README.md                    // 项目说明文档

环境依赖

  • Python 3.8
  • Tushare
  • TensorFlow 2.0
  • Pandas
  • NumPy

运行方法

  1. 安装依赖:

    shell 复制代码
    pip install -r requirements.txt
  2. 下载数据:

    shell 复制代码
    python download_data.py
  3. 训练RNN模型:

    shell 复制代码
    python rnn_stock.py
  4. 训练LSTM模型:

    shell 复制代码
    python lstm_stock.py

项目文件

rnn_stock.py

python 复制代码
# rnn_stock.py 文件内容

lstm_stock.py

python 复制代码
# lstm_stock.py 文件内容

结论

通过本项目,用户可以了解如何使用RNN和LSTM模型进行时间序列预测,并掌握相关的TensorFlow编程技巧。该项目为股票价格预测提供了一种有效的解决方案。

相关推荐
小oo呆3 小时前
【自然语言处理与大模型】模型压缩技术之量化
人工智能·自然语言处理
Magnum Lehar3 小时前
ApophisZerg游戏引擎项目目录展示
人工智能·vscode·编辑器·游戏引擎
飞桨PaddlePaddle3 小时前
Wan2.1和HunyuanVideo文生视频模型算法解析与功能体验丨前沿多模态模型开发与应用实战第六期
人工智能·算法·百度·音视频·paddlepaddle·飞桨·deepseek
绿算技术3 小时前
存储新势力:助力DeepSeek一体机
人工智能·科技·缓存·fpga开发
Y1nhl4 小时前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
胡攀峰4 小时前
第12章 微调生成模型
人工智能·大模型·llm·sft·强化学习·rlhf·指令微调
yuanlaile4 小时前
AI大模型自然语言处理能力案例演示
人工智能·ai·自然语言处理
小白白搭建4 小时前
WordPress AI 原创文章自动生成插件 24小时全自动生成SEO原创文章 | 多语言支持 | 智能配图与排版
人工智能
Jamence4 小时前
多模态大语言模型arxiv论文略读(三十九)
人工智能·语言模型·自然语言处理
ai大模型木子4 小时前
嵌入模型(Embedding Models)原理详解:从Word2Vec到BERT的技术演进
人工智能·自然语言处理·bert·embedding·word2vec·ai大模型·大模型资料