008 | 基于RNN和LSTM的贵州茅台股票开盘价预测

基于RNN和LSTM的贵州茅台股票开盘价预测

项目简介:

本项目旨在通过使用Tushare下载贵州茅台的股票数据,并基于这些历史数据,使用TensorFlow 2.0实现循环神经网络(RNN)和长短期记忆网络(LSTM)来预测股票的开盘价。本项目提供了完整的数据获取、处理、模型构建和预测的流程。

项目步骤:

1. 数据获取

使用Tushare库获取贵州茅台的历史股票数据,包括开盘价、收盘价、最高价、最低价、成交量等。

python 复制代码
import tushare as ts

# 设置Tushare的token
ts.set_token('your_token_here')
pro = ts.pro_api()

# 获取贵州茅台的历史数据
df = pro.daily(ts_code='600519.SH', start_date='20100101', end_date='20230701')
df.to_csv('maotai.csv', index=False)

2. 数据处理

读取下载的CSV文件,处理日期格式,并准备好输入特征和目标值。

python 复制代码
import pandas as pd
import numpy as np

# 读取数据
df = pd.read_csv('maotai.csv')

# 按日期排序
df['trade_date'] = pd.to_datetime(df['trade_date'])
df = df.sort_values('trade_date')

# 准备输入特征和目标值
data = df['open'].values.reshape(-1, 1)

3. 构建RNN模型

使用TensorFlow 2.0构建RNN模型,并训练模型。

python 复制代码
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense

# 构建RNN模型
model = Sequential()
model.add(SimpleRNN(50, activation='relu', return_sequences=True, input_shape=(30, 1)))
model.add(SimpleRNN(50, activation='relu'))
model.add(Dense(1))

# 编译模型
model.compile(optimizer='adam', loss='mse')

# 训练模型
model.fit(X_train, y_train, epochs=50, batch_size=32)

4. 构建LSTM模型

使用TensorFlow 2.0构建LSTM模型,并训练模型。

python 复制代码
from tensorflow.keras.layers import LSTM

# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, activation='relu', return_sequences=True, input_shape=(30, 1)))
model.add(LSTM(50, activation='relu'))
model.add(Dense(1))

# 编译模型
model.compile(optimizer='adam', loss='mse')

# 训练模型
model.fit(X_train, y_train, epochs=50, batch_size=32)

5. 预测与评估

使用训练好的模型进行预测,并评估模型的效果。

python 复制代码
# 预测
predicted_stock_price = model.predict(X_test)

# 评估
mse = np.mean(np.square(predicted_stock_price - y_test))
print(f'Mean Squared Error: {mse}')

运行结果


项目结构

复制代码
├── data
│   ├── maotai.csv               // 下载的贵州茅台股票数据
├── models
│   ├── rnn_stock.py             // RNN模型代码
│   ├── lstm_stock.py            // LSTM模型代码
├── results
│   ├── rnn_predictions.csv      // RNN模型预测结果
│   ├── lstm_predictions.csv     // LSTM模型预测结果
└── README.md                    // 项目说明文档

环境依赖

  • Python 3.8
  • Tushare
  • TensorFlow 2.0
  • Pandas
  • NumPy

运行方法

  1. 安装依赖:

    shell 复制代码
    pip install -r requirements.txt
  2. 下载数据:

    shell 复制代码
    python download_data.py
  3. 训练RNN模型:

    shell 复制代码
    python rnn_stock.py
  4. 训练LSTM模型:

    shell 复制代码
    python lstm_stock.py

项目文件

rnn_stock.py

python 复制代码
# rnn_stock.py 文件内容

lstm_stock.py

python 复制代码
# lstm_stock.py 文件内容

结论

通过本项目,用户可以了解如何使用RNN和LSTM模型进行时间序列预测,并掌握相关的TensorFlow编程技巧。该项目为股票价格预测提供了一种有效的解决方案。

相关推荐
FlagOS智算系统软件栈24 分钟前
与创新者同频!与FlagOS共赴开源之约
人工智能·ai·开源
加油吧zkf2 小时前
循环神经网络 RNN:从时间序列到自然语言的秘密武器
人工智能·rnn·自然语言处理
koo3643 小时前
李宏毅机器学习笔记30
人工智能·笔记·机器学习
长桥夜波4 小时前
机器学习日报02
人工智能·机器学习·neo4j
Elastic 中国社区官方博客4 小时前
介绍 Elastic 的 Agent Builder - 9.2
大数据·运维·人工智能·elasticsearch·搜索引擎·ai·全文检索
拓端研究室4 小时前
专题:2025年制造业数智化发展白皮书:数字化转型与智能制造|附130+份报告PDF、数据、绘图模板汇总下载
人工智能
就不爱吃大米饭4 小时前
ChatGPT官方AI浏览器正式推出:ChatGPT Atlas浏览器功能及操作全解!
人工智能·chatgpt
牛客企业服务4 小时前
企业招聘新趋势:「AI面试」如何破解在线作弊难题?
人工智能·面试·职场和发展·招聘·ai招聘
infominer4 小时前
数据处理像搭乐高?详解 RAGFlow Ingestion Pipeline
人工智能·ai-native
wudl55665 小时前
华工科技(000988)2025年4月22日—10月22日
大数据·人工智能·科技