NLP_情感分类_数据清洗

文章目录


项目背景

项目的目的,是为了对情感评论数据集进行预测打标。在训练之前,需要对数据进行数据清洗环节,下面对数据集进行清洗,清洗完,后续再进行训练、评估

数据清洗

导包

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import pickle
import numpy as np
import gc
import swifter
import os

导入数据

python 复制代码
df = pd.read_csv('data/sentiment_analysis.csv')
df

查看标签分布

python 复制代码
# 设置Seaborn的样式
sns.set(style="whitegrid")

# 创建一个计数图
plt.figure(figsize=(8, 6))
sns.countplot(x='label', data=df, palette='viridis')

# 添加标题和标签
plt.title('Label Distribution')
plt.xlabel('Label')
plt.ylabel('Count')

# 显示图形
plt.show()

删除emoji表情

python 复制代码
import re
from cleantext import clean

df['text'] = df['text'].swifter.apply(clean)

删除URL

python 复制代码
df['text'] = df['text'].swifter.apply(lambda x: re.sub(r'http\S+', '', x))

转换成小写

python 复制代码
df['text'] = df['text'].swifter.apply(lambda x: x.lower())

删除停用词

python 复制代码
import nltk
from nltk.corpus import stopwords

stopwords=set(stopwords.words('english'))

def remove_stopwords(data):
    output_array=[]
    for sentence in tqdm(data):
        temp_list=[]
        for word in sentence.split():
            if word not in stopwords:
                temp_list.append(word)
        output_array.append(' '.join(temp_list))
    return output_array

df['text'] = remove_stopwords(df['text'])

删除标点符号

python 复制代码
import string

df['text'] = df['text'].swifter.apply(lambda x: x.translate(str.maketrans('', '', string.punctuation)))

保存清洗后的数据

python 复制代码
df.to_csv('data/sentiment_analysis_clean.csv',index=False)

同类型项目

阿里云-零基础入门NLP【基于机器学习的文本分类】

阿里云-零基础入门NLP【基于深度学习的文本分类3-BERT】

也可以参考进行学习


学习的参考资料:

深度之眼

相关推荐
我一身正气怎能输4 分钟前
游戏大厂A*寻路优化秘籍:流畅不卡顿
人工智能·游戏
johnny2331 小时前
AI工作流编排平台
人工智能
百***35482 小时前
DeepSeek在情感分析中的细粒度识别
人工智能
Qzkj6662 小时前
从规则到智能:企业数据分类分级的先进实践与自动化转型
大数据·人工智能·自动化
weixin79893765432...2 小时前
React + Fastify + DeepSeek 实现一个简单的对话式 AI 应用
人工智能·react.js·fastify
大千AI助手3 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
狂炫冰美式3 小时前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端
LCG元4 小时前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI4 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
操练起来4 小时前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann