NLP_情感分类_数据清洗

文章目录


项目背景

项目的目的,是为了对情感评论数据集进行预测打标。在训练之前,需要对数据进行数据清洗环节,下面对数据集进行清洗,清洗完,后续再进行训练、评估

数据清洗

导包

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import pickle
import numpy as np
import gc
import swifter
import os

导入数据

python 复制代码
df = pd.read_csv('data/sentiment_analysis.csv')
df

查看标签分布

python 复制代码
# 设置Seaborn的样式
sns.set(style="whitegrid")

# 创建一个计数图
plt.figure(figsize=(8, 6))
sns.countplot(x='label', data=df, palette='viridis')

# 添加标题和标签
plt.title('Label Distribution')
plt.xlabel('Label')
plt.ylabel('Count')

# 显示图形
plt.show()

删除emoji表情

python 复制代码
import re
from cleantext import clean

df['text'] = df['text'].swifter.apply(clean)

删除URL

python 复制代码
df['text'] = df['text'].swifter.apply(lambda x: re.sub(r'http\S+', '', x))

转换成小写

python 复制代码
df['text'] = df['text'].swifter.apply(lambda x: x.lower())

删除停用词

python 复制代码
import nltk
from nltk.corpus import stopwords

stopwords=set(stopwords.words('english'))

def remove_stopwords(data):
    output_array=[]
    for sentence in tqdm(data):
        temp_list=[]
        for word in sentence.split():
            if word not in stopwords:
                temp_list.append(word)
        output_array.append(' '.join(temp_list))
    return output_array

df['text'] = remove_stopwords(df['text'])

删除标点符号

python 复制代码
import string

df['text'] = df['text'].swifter.apply(lambda x: x.translate(str.maketrans('', '', string.punctuation)))

保存清洗后的数据

python 复制代码
df.to_csv('data/sentiment_analysis_clean.csv',index=False)

同类型项目

阿里云-零基础入门NLP【基于机器学习的文本分类】

阿里云-零基础入门NLP【基于深度学习的文本分类3-BERT】

也可以参考进行学习


学习的参考资料:

深度之眼

相关推荐
key068 分钟前
大模型在网络安全领域的应用与评测
网络·人工智能·web安全
北京耐用通信39 分钟前
破解工业通信瓶颈:耐达讯自动化Modbus转Profinet网关连接驱动器的奥秘
人工智能·物联网·网络协议·自动化·信息与通信
应用市场1 小时前
OpenCV进阶:图像变换、增强与特征检测实战
人工智能·opencv·计算机视觉
说私域1 小时前
开源链动2+1模式、AI智能名片与S2B2C商城小程序:社群经济的数字化重构路径
人工智能·小程序·开源
rengang661 小时前
智能化的重构建议:大模型分析代码结构,提出可读性和性能优化建议
人工智能·性能优化·重构·ai编程
灵遁者书籍作品1 小时前
语言的拓扑学约束公理:语言对实在的描述具有拓扑不变量——某些真理必须通过悖论、沉默或隐喻表达
人工智能·计算机视觉
一尘之中1 小时前
觉醒的拓扑学:在量子纠缠与神经幻象中重构现实认知
人工智能·重构
金宗汉1 小时前
《宇宙递归拓扑学:基于自指性与拓扑流形的无限逼近模型》
大数据·人工智能·笔记·算法·观察者模式
Joy T2 小时前
海南蓝碳:生态财富与科技驱动的新未来
大数据·人工智能·红树林·海南省·生态区建设
N0nename2 小时前
TR3--Transformer之pytorch复现
人工智能·pytorch·python