基于R语言BIOMOD2 及机器学习方法的物种分布模拟技术

原文链接:基于R语言BIOMOD2 及机器学习方法的物种分布模拟技术https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247610916&idx=4&sn=87f83681bb2f3465dc505818540c0a82&chksm=fa8273c3cdf5fad53e1d9383a02ab9ac7bbdad887a78c4f39887203cfc05816fbc760c33a1d5&token=425735133&lang=zh_CN#rd

一:理论

生态模型基础:生态模型的基本和物种分布模型(SDMs)的重要性。

R语言重点工具入门:数据输入与输出、科学计算、地理数据分析、数据可视化等功能。

二:数据获取与预处理

(1)物种分布数据;

(2)环境变量(站点数据、遥感数据)。

基于R语言的数据预处理:

(1)数据提取:根据需求批量提取相关数据;

(2)数据清洗:数据清洗的原则与方法;

(3)特征变量选择:通过相关性分析、主成分分析(PCA)等方法选择具有代表性的特征变量,提高模型效率。

三:模型的建立与评估

(1)机器学习原理;(2)常见机器学习算法与流程

基于单一机器学习算法的物种分布特征模拟(以最大熵算法为例)。

biomod2程序包与使用:原理、构成

构建第一个物种分布模型,包括选择模型类型和调整参数。

模型评估方法:通过ROC曲线、AUC值等方法评估模型的有效性和准确性。

四:模型优化与多模型集成

典型算法参数优化:对随机森林、最大熵等算法进行参数优化,提高模型性能。

集成方法:结合多个模型提高预测结果的稳定性和准确性。

物种分布特征预测: 基于单一模型与集成模型预测物种未来分布特征。

五:结果分析和案例

结果分析:物种分布特征、环境变量与物种分布关系、未来分布特征预测。

科学制图:栅格图、柱状图、降维结果图等。

相关推荐
艾莉丝努力练剑13 分钟前
【LeetCode&数据结构】单链表的应用——反转链表问题、链表的中间节点问题详解
c语言·开发语言·数据结构·学习·算法·leetcode·链表
橡晟4 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子4 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
倔强青铜34 小时前
苦练Python第18天:Python异常处理锦囊
开发语言·python
Leah01054 小时前
机器学习、深度学习、神经网络之间的关系
深度学习·神经网络·机器学习·ai
u_topian5 小时前
【个人笔记】Qt使用的一些易错问题
开发语言·笔记·qt
珊瑚里的鱼5 小时前
LeetCode 692题解 | 前K个高频单词
开发语言·c++·算法·leetcode·职场和发展·学习方法
AI+程序员在路上5 小时前
QTextCodec的功能及其在Qt5及Qt6中的演变
开发语言·c++·qt
xingshanchang5 小时前
Matlab的命令行窗口内容的记录-利用diary记录日志/保存命令窗口输出
开发语言·matlab
Risehuxyc5 小时前
C++卸载了会影响电脑正常使用吗?解析C++运行库的作用与卸载后果
开发语言·c++