基于R语言BIOMOD2 及机器学习方法的物种分布模拟技术

原文链接:基于R语言BIOMOD2 及机器学习方法的物种分布模拟技术https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247610916&idx=4&sn=87f83681bb2f3465dc505818540c0a82&chksm=fa8273c3cdf5fad53e1d9383a02ab9ac7bbdad887a78c4f39887203cfc05816fbc760c33a1d5&token=425735133&lang=zh_CN#rd

一:理论

生态模型基础:生态模型的基本和物种分布模型(SDMs)的重要性。

R语言重点工具入门:数据输入与输出、科学计算、地理数据分析、数据可视化等功能。

二:数据获取与预处理

(1)物种分布数据;

(2)环境变量(站点数据、遥感数据)。

基于R语言的数据预处理:

(1)数据提取:根据需求批量提取相关数据;

(2)数据清洗:数据清洗的原则与方法;

(3)特征变量选择:通过相关性分析、主成分分析(PCA)等方法选择具有代表性的特征变量,提高模型效率。

三:模型的建立与评估

(1)机器学习原理;(2)常见机器学习算法与流程

基于单一机器学习算法的物种分布特征模拟(以最大熵算法为例)。

biomod2程序包与使用:原理、构成

构建第一个物种分布模型,包括选择模型类型和调整参数。

模型评估方法:通过ROC曲线、AUC值等方法评估模型的有效性和准确性。

四:模型优化与多模型集成

典型算法参数优化:对随机森林、最大熵等算法进行参数优化,提高模型性能。

集成方法:结合多个模型提高预测结果的稳定性和准确性。

物种分布特征预测: 基于单一模型与集成模型预测物种未来分布特征。

五:结果分析和案例

结果分析:物种分布特征、环境变量与物种分布关系、未来分布特征预测。

科学制图:栅格图、柱状图、降维结果图等。

相关推荐
夏霞37 分钟前
c# ASP.NET Core SignalR 客户端与服务端自动重连配置指南
开发语言·c#·asp.net
源码之家1 小时前
机器学习:基于大数据二手房房价预测与分析系统 可视化 线性回归预测算法 Django框架 链家网站 二手房 计算机毕业设计✅
大数据·算法·机器学习·数据分析·spark·线性回归·推荐算法
@老蝴1 小时前
Java EE - 常见的死锁和解决方法
java·开发语言·java-ee
AI_56783 小时前
接口测试“零基础通关“:Postman从入门到自动化测试实战指南
开发语言·lua
是Yu欸3 小时前
Rust 并发实战:从零构建一个内存安全的“番茄时钟”
开发语言·安全·rust
应用市场4 小时前
Qt QTreeView深度解析:从原理到实战应用
开发语言·数据库·qt
ooooooctober4 小时前
PHP代码审计框架性思维的建立
android·开发语言·php
864记忆4 小时前
Qt Widgets 模块中的函数详解
开发语言·qt
white-persist4 小时前
差异功能定位解析:C语言与C++(区别在哪里?)
java·c语言·开发语言·网络·c++·安全·信息可视化
q***72874 小时前
Golang 构建学习
开发语言·学习·golang