语言模型-神经网络模型(二)

神经网络模型语言模型

神经网络模型

释义:

与ngram模型相似使用,前n个词预测下一个词,输出在字表上的概率分布;过程中得到了词向量这一副产品

神经网络语言模型开篇作

神经网络的分类

自回归语言模型:

用前n个字预测下一个字

单向,从左向右预测,或反向使用

有利于生成式任务

自编码语言模型:

用整段文本,预测文本中的某一个字(完形填空)

双向,更好的利用文本信息

引入了[mask],在fine-tune中不出现

神经网络模型和Ngram对比

优点:

1.对于输入长度的要求更低,更能适用;因为Ngram的参数和长度有非常大的关系,多一个字就会新增相当的参数;而神经网络模型不会

2.神经网络模型能够计算词之间的相似性,而Ngram则不行,无法识别词之间的相似性

3.神经网络模型自带平滑,即使是未出现的组合和词,计算的概率也不会为零

缺点:

1.在运算的效率上,ngram比神经网络模型要高很多;ngram计算时,只需要遍历找到概率值计算即可;神经网络模型对于每一个词都需要计算一次。

应用一-话者分离

释义: 根据说话内容判断说话人,常用于语言识别系统中,判断录音对话中角色,如客服对话录音,判断坐席或客户;本质上为文本分类任务。

步骤

1.对于每个类别,使用类别语料训练语言模型

2.对于一个新输入的文本,用所有语言模型计算成句概率

3.选取概率最高的类别为预测类别

对比优劣

相比一般文本分类模型,如贝叶斯,rf,神经网络等
优势:

1.每个类别模型互相独立,样本不均衡或样本有错误对其他模型没有影响

2.可以随时增加新的类别,而不影响旧的类别的效果

劣势:

1.效果上讲:一般不会有显著优势

2.效率上讲:一般会低于统一的分类模型

应用二-数字归一化

释义: 将一个文本中的数字部分转化成对读者友好的样式,常见于语言识别系统后,展示文本时使用。

下面举例:

1.秦皇岛港煤炭库存量在十一月初突然激增,从四百五十四点九万吨增加到七百七十三点四万吨,打破了一九九九年以来的记录

2.十一届三中全会、"十二五"规划、一贫如洗、二龙戏珠
解释: 由上面的例子,我们知道有些汉语数字是适合转阿拉伯数字的,有的情况不适合,我们需要用语言模型,去判断或者计算使用那种数字的概率高

步骤:

  1. 找到数字形式符合规范的文本作为原始语料
  2. 用正则表达式找到数字部分(任意形式)
  3. 将数字部分依照其格式替换为<阿拉伯数字><汉字数字><汉字连读>等token
  4. 使用带token文本训练语言模型
  5. 对于新输入的文本,同样使用正则表达式找到数字部分,之后分别带入各个token,使用语言模型计算概率
  6. 选取概率最高的token最为最终数字格式,按照规则转化后填入原文本

示例

中国共产党第十五次全国代表大会于一九九七年九月十二日召开,各地方代表一一发言

中国共产党第<汉字数字>次全国代表大会于<阿拉伯数字>年<阿拉伯数字>月<阿拉伯数字>日召开,各地方代表<汉字连续>发言

训练时,将当成一个字训练语言模型

预测时,中国共产党第十五次全国代表 <- 原句

中国共产党第<汉字数字>次全国代表

中国共产党第<阿拉伯数字>次全国代表 语言模型判断最高概率

中国共产党第<汉字连续>次全国代表

若需要转化格式则通过规则完成,模型只起到判断作用

应用三-文本打标

释义: 给文本添加标点或语气停顿等,可以理解为一种粗粒度的分词,常用于语音合成任务中,辅助做出发音的停顿。语言模型都能够实现。

示例:

我最近抽了点时间读了一本关于马尔可夫生平的书
停顿: 我最近 抽了点时间 读了一本 关于 马尔可夫生平 的书
标点: 我最近抽了点时间,读了一本关于马尔可夫生平的书。

实现逻辑:

  1. 需要有标注数据,在停顿处添加token:
    如:

  2. 我最近 < s > 抽了点时间 < s > 读了一本 < s > 关于 < s > 马尔可夫生平 < s > 的书

    3.带token训练语言模型

4.预测过程:

选定一个窗口长度,首先预测第一次停顿位置

我< s >最近抽了点时间 ppl:10

我最< s >近抽了点时间 ppl:20

我最近< s >抽了点时间 ppl:5 <- 选择此处作为第一次停顿

....
之后从"抽了点时间"开始向后重复此过程;就可以获得分好的句子。

总结:

本质为序列标注任务;可以依照类似方式,处理分词、文本加标点、文本段落切分等任务;分词或切分段落只需要一种token;打标点时,可以用多种分隔token,代表不同标点

相关推荐
阿里云大数据AI技术3 分钟前
云栖实录 | 从多模态数据到 Physical AI,PAI 助力客户快速启动 Physical AI 实践
人工智能
小关会打代码10 分钟前
计算机视觉进阶教学之颜色识别
人工智能·计算机视觉
IT小哥哥呀16 分钟前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类
机器之心41 分钟前
VAE时代终结?谢赛宁团队「RAE」登场,表征自编码器或成DiT训练新基石
人工智能·openai
机器之心42 分钟前
Sutton判定「LLM是死胡同」后,新访谈揭示AI困境
人工智能·openai
大模型真好玩1 小时前
低代码Agent开发框架使用指南(四)—Coze大模型和插件参数配置最佳实践
人工智能·agent·coze
jerryinwuhan1 小时前
基于大语言模型(LLM)的城市时间、空间与情感交织分析:面向智能城市的情感动态预测与空间优化
人工智能·语言模型·自然语言处理
落雪财神意1 小时前
股指10月想法
大数据·人工智能·金融·区块链·期股
中杯可乐多加冰1 小时前
无代码开发实践|基于业务流能力快速开发市场监管系统,实现投诉处理快速响应
人工智能·低代码
渣渣盟1 小时前
解密NLP:从入门到精通
人工智能·python·nlp