PixelLib图像分割

文章目录


前言

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。

传统的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。

本文重点的介绍基于深度学习的图像分割,PixelLib是深度学习图像分割的方法之一,官方给出了多个训练好的模型,适合新手使用;

图像分割应用场景:虚拟背景、医学图像处理、自动驾驶、卫星遥感等等


一、PixelLib依赖安装

python 复制代码
pip install tensorflow
pip install imgaug
pip install pixellib --upgrade

PixelLib支持两种主要的分割类型,

你可以通过使用Pixel Lib训练数据集来创建对象分割的自定义模型:

语义分割:图像中具有相同像素值的对象使用相同的颜色映射进行分割。

实例分割:使用不同的颜色贴图分割同一对象的实例。

二、实例

c 复制代码
from pixellib.semantic import semantic_segmentation
segment_image = semantic_segmentation()
# 加载deeplabv3_xception65_ade20k.h5模型
# 模型在官网都有提供了下载链接
segment_image.load_ade20k_model("deeplabv3_xception65_ade20k.h5")
# 输入图片sample1.jpg,输出图片image_new.jpg,overlay = True时图像透明显示分割层
segment_image.segmentAsAde20k("sample1.jpg", output_image_name = "image_new.jpg", overlay = True)



PixelLib模型主要两类:

1.Deeplabv3+ 预训练模型:用于语义分割,训练数据为 150类的Ade20k 和 20类的Pascalvoc

2.Mask RCNN 预训练模型:用于实例分割,训练数据为 80类的COCO


模型训练

模型训练部分,可以阅读官方文档:

https://pixellib.readthedocs.io/en/latest/custom_train.html

使用标注工具labelme,对数据集进行标准,按照pixellib的数据集格式要求进行训练。

相关推荐
九年义务漏网鲨鱼7 分钟前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间23 分钟前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享25 分钟前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾1 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码1 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5891 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien1 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松2 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_12 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf
敲键盘的小夜猫2 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain