YOLO系列算法解析

一、深度学习算法概述

1、不同阶段算法优缺点分析

One-stage:

优点:速度非常快,适合做实时监测任务

缺点:效果通常不好

2、yolo评价指标

yolo评价指标:map和fps
Map指标 :综合衡量检测效果

精度:识别准确率

召回率(recall):识别是否完全,有没有没有检测到的

TP:正确被检测到的

FP:错误被检测到的

FN:遗漏的
IOU:真实值与预测值的交集/真实值与预测值的并集

二、YOLOv1

1、特点

经典one-stage方法

把检测问题转换为回归问题,一个CNN就行

对视频进行实时检测

2、核心思想

输入S*S的格子,每个点产生两种候选框,切实有物体的点产生的候选框进行微调(置信度判断是否有物体),筛选出IOU大的

3、网络架构

7×7表示格子大小,30的含义:前5个是B1(x1,y1,w1,h1,c1),在5个表示B2,剩下20表示当前数据集有20个分类类别

三、YOLOv2

1、与V1的区别

V2版本舍弃了全连接层,不再使用DropOut,卷积之后全部加入Batch Normalization(网络每一层的输入都做了归一化,网络收敛更容易 Conv-BN),经过BN处理后网络提升2%的map

V2更大的分辨率:V1训练时用的是224×224的输入大小,测试用448×448,这样可能导致模型效率降低,V2训练时额外进行10次448×448的微调,使用高分辨率的的分类器后,map提升约4%

使用k-means聚类来提取先验框,这样对候选框大小不敏感,更适用于真实的数据集

通过引入Anchor boxes,使得预测的box数量更多,在基本不影响mAP的情况下,提高了大约7%的召回率

2、 网络结构



越大的感受野,越能感受大的物体。最后一层感受野太大,小目标可能就丢失了,需要融合之前的特征


四、YOLOv3

相较于之前的版本,最大的改进就是网络结构,使其更适合小目标检测

Darknet-53 没有池化,下采样通过stride为2来实现和全连接层

使用了resnet的思想,至少不比原来差

特征做的更细致,融合多持续特征图来预测不同规格物体

先验框更丰富,3种scale,每种3个规格,一共9种

softmax改进,预测多标签任务

相关推荐
工程师老罗6 小时前
Pascal VOC数据集简介及数据格式说明
yolo
Lun3866buzha7 小时前
【深度学习应用】鸡蛋裂纹检测与分类:基于YOLOv3的智能识别系统,从图像采集到缺陷分类的完整实现
深度学习·yolo·分类
Lun3866buzha7 小时前
YOLOv8-SEG-FastNet-BiFPN实现室内物品识别与分类:背包、修正带、立方体和铅笔盒检测指南
yolo·分类·数据挖掘
Faker66363aaa8 小时前
基于YOLOv8-GhostHGNetV2的绝缘子破损状态检测与分类系统实现
yolo·分类·数据挖掘
Ryan老房9 小时前
智能家居AI-家庭场景物体识别标注实战
人工智能·yolo·目标检测·计算机视觉·ai·智能家居
工程师老罗10 小时前
举例说明YOLOv1 输出坐标到原图像素的映射关系
人工智能·yolo·计算机视觉
逸俊晨晖10 小时前
NVIDIA 4090的8路1080p实时YOLOv8目标检测
人工智能·yolo·目标检测·nvidia
工程师老罗12 小时前
YOLOv1数据增强
人工智能·yolo
weixin_4684668512 小时前
目标识别精度指标与IoU及置信度关系辨析
人工智能·深度学习·算法·yolo·图像识别·目标识别·调参
智驱力人工智能21 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算