YOLO系列算法解析

一、深度学习算法概述

1、不同阶段算法优缺点分析

One-stage:

优点:速度非常快,适合做实时监测任务

缺点:效果通常不好

2、yolo评价指标

yolo评价指标:map和fps
Map指标 :综合衡量检测效果

精度:识别准确率

召回率(recall):识别是否完全,有没有没有检测到的

TP:正确被检测到的

FP:错误被检测到的

FN:遗漏的
IOU:真实值与预测值的交集/真实值与预测值的并集

二、YOLOv1

1、特点

经典one-stage方法

把检测问题转换为回归问题,一个CNN就行

对视频进行实时检测

2、核心思想

输入S*S的格子,每个点产生两种候选框,切实有物体的点产生的候选框进行微调(置信度判断是否有物体),筛选出IOU大的

3、网络架构

7×7表示格子大小,30的含义:前5个是B1(x1,y1,w1,h1,c1),在5个表示B2,剩下20表示当前数据集有20个分类类别

三、YOLOv2

1、与V1的区别

V2版本舍弃了全连接层,不再使用DropOut,卷积之后全部加入Batch Normalization(网络每一层的输入都做了归一化,网络收敛更容易 Conv-BN),经过BN处理后网络提升2%的map

V2更大的分辨率:V1训练时用的是224×224的输入大小,测试用448×448,这样可能导致模型效率降低,V2训练时额外进行10次448×448的微调,使用高分辨率的的分类器后,map提升约4%

使用k-means聚类来提取先验框,这样对候选框大小不敏感,更适用于真实的数据集

通过引入Anchor boxes,使得预测的box数量更多,在基本不影响mAP的情况下,提高了大约7%的召回率

2、 网络结构



越大的感受野,越能感受大的物体。最后一层感受野太大,小目标可能就丢失了,需要融合之前的特征


四、YOLOv3

相较于之前的版本,最大的改进就是网络结构,使其更适合小目标检测

Darknet-53 没有池化,下采样通过stride为2来实现和全连接层

使用了resnet的思想,至少不比原来差

特征做的更细致,融合多持续特征图来预测不同规格物体

先验框更丰富,3种scale,每种3个规格,一共9种

softmax改进,预测多标签任务

相关推荐
java1234_小锋5 小时前
[免费]基于Python的YOLO深度学习垃圾分类目标检测系统【论文+源码】
python·深度学习·yolo·垃圾分类·垃圾分类检测
AI棒棒牛6 小时前
论文精读系列:Retinanet——目标检测领域中的SCI对比实验算法介绍!可一键跑通的对比实验,极大节省小伙伴的时间!!!
yolo·目标检测·计算机视觉·对比实验·1024程序员节·创新·rtdter
遇雪长安7 小时前
深度学习YOLO实战:4、模型的三要素:任务、类别与规模
人工智能·深度学习·yolo
侯喵喵12 小时前
Jetson orin agx配置ultralytics 使用docker或conda
yolo·docker·1024程序员节·ultralytics
tainshuai20 小时前
YOLOv4 实战指南:单 GPU 训练的目标检测利器
yolo·目标检测·机器学习
飞翔的佩奇20 小时前
【完整源码+数据集+部署教程】【运动的&足球】足球场地区域图像分割系统源码&数据集全套:改进yolo11-RFAConv
前端·python·yolo·计算机视觉·数据集·yolo11·足球场地区域图像分割系统
夏天是冰红茶1 天前
恶劣天气目标检测IA-YOLO
yolo·目标检测·目标跟踪
MavenTalk1 天前
如何根据不同的场景选择YOLO相应的基座模型
python·yolo·yolo11n·yolo11m·yolo11s·yolo11x
LiJieNiub1 天前
深入解析 YOLOv5 datasets.py:数据加载与增强的核心逻辑
yolo
code bean1 天前
【Yolo】Yolo实操7点建议(多个项目经验总结,训练图片累计超过2万张)
yolo