YOLO系列算法解析

一、深度学习算法概述

1、不同阶段算法优缺点分析

One-stage:

优点:速度非常快,适合做实时监测任务

缺点:效果通常不好

2、yolo评价指标

yolo评价指标:map和fps
Map指标 :综合衡量检测效果

精度:识别准确率

召回率(recall):识别是否完全,有没有没有检测到的

TP:正确被检测到的

FP:错误被检测到的

FN:遗漏的
IOU:真实值与预测值的交集/真实值与预测值的并集

二、YOLOv1

1、特点

经典one-stage方法

把检测问题转换为回归问题,一个CNN就行

对视频进行实时检测

2、核心思想

输入S*S的格子,每个点产生两种候选框,切实有物体的点产生的候选框进行微调(置信度判断是否有物体),筛选出IOU大的

3、网络架构

7×7表示格子大小,30的含义:前5个是B1(x1,y1,w1,h1,c1),在5个表示B2,剩下20表示当前数据集有20个分类类别

三、YOLOv2

1、与V1的区别

V2版本舍弃了全连接层,不再使用DropOut,卷积之后全部加入Batch Normalization(网络每一层的输入都做了归一化,网络收敛更容易 Conv-BN),经过BN处理后网络提升2%的map

V2更大的分辨率:V1训练时用的是224×224的输入大小,测试用448×448,这样可能导致模型效率降低,V2训练时额外进行10次448×448的微调,使用高分辨率的的分类器后,map提升约4%

使用k-means聚类来提取先验框,这样对候选框大小不敏感,更适用于真实的数据集

通过引入Anchor boxes,使得预测的box数量更多,在基本不影响mAP的情况下,提高了大约7%的召回率

2、 网络结构



越大的感受野,越能感受大的物体。最后一层感受野太大,小目标可能就丢失了,需要融合之前的特征


四、YOLOv3

相较于之前的版本,最大的改进就是网络结构,使其更适合小目标检测

Darknet-53 没有池化,下采样通过stride为2来实现和全连接层

使用了resnet的思想,至少不比原来差

特征做的更细致,融合多持续特征图来预测不同规格物体

先验框更丰富,3种scale,每种3个规格,一共9种

softmax改进,预测多标签任务

相关推荐
weixin_3981877511 小时前
YOLOv11训练教程:PyTorch与PyCharm在Windows 11下的完整指南
pytorch·yolo·pycharm
musk121212 小时前
YOLO环境搭建,win11+wsl2+ubuntu24+cuda12.6+idea
yolo·cuda·wsl2
乌恩大侠13 小时前
【调研】YOLO算法在FPGA/ZYNQ上的部署与加速
yolo·fpga开发
AI技术控16 小时前
计算机视觉算法实战——基于YOLOv8的汽车试验场积水路段识别系统
yolo·汽车
大知闲闲哟21 小时前
深度学习Y3周:yolov5s.yaml文件解读
yolo
hjs_deeplearning1 天前
论文写作篇#8:双栏的格式里怎么插入横跨两栏的图片和表格
人工智能·深度学习·学习·yolo·机器学习·论文写作·论文排版
AI技术控1 天前
计算机视觉算法实战——基于YOLOv8的自动驾驶障碍物实时感知系统
人工智能·yolo·自动驾驶
yolo大师兄2 天前
【YOLO系列(V5-V12)通用数据集-火灾烟雾检测数据集】
人工智能·深度学习·yolo·目标检测·机器学习
贤小二AI3 天前
贤小二c#版Yolov5 yolov8 yolov10 yolov11自动标注工具 + 免python环境 GPU一键训练包
人工智能·深度学习·yolo
zy_destiny4 天前
【工业场景】用YOLOv12实现饮料类别识别
人工智能·python·深度学习·yolo·机器学习·计算机视觉·目标跟踪