YOLO:使用labelme进行图片数据标签制作,并转换为YOLO格式

作者:CSDN @ 养乐多

本文将介绍如何使用 labelme 进行图片数据标签制作的方法,并将标签的格式从 JSON 格式转换为 YOLO 格式。


文章目录


一、安装labelme

试过了labelme和labelImg,labelImg经常奔溃不太好用,最终选择labelme。

python 复制代码
pip install labelme

二、使用流程

运行labelme,

比较好的数据管理方式是,将图片和标注信息分开保存,方便之后数据格式转换和数据集划分的脚本使用。所以需要将标注信息输出路径修改一下。我把图片都保存在images文件夹下了,输出标注信息的路径是和images同级的labels文件夹。最好取消同时保存图像数据按钮,并点击自动保存按钮。

python 复制代码
总结:
1.点击自动保存;
2.更改标注信息输出路径到labels文件夹;
3.取消同时保存图像数据。

打开目录读取数据集,

编辑菜单中选择创建矩形,这是为了YOLO这种目标检测算法做标签用的。语义分割、目标追踪等就选多边形。

拖动矩形框并输入标注名称,点击ok即可自动保存。标注完之后选择下一张。

最后,labels文件夹下会保存所有的标注数据,不过是json格式。

如果想要用到YOLO算法中还需要将json格式修改为YOLO格式。

保存结果如下图所示,

三、json格式转为YOLO格式

category_dict,input_directory,output_directory 。

使用时,需要修改这三个变量。

category_dict:类别字典,对应类别名和类别ID;

input_directory :json保存的目录;

output_directory :YOLO格式标注的目录。

python 复制代码
import json
import os

category_dict = {'飞机': '1'}  # 类别字典

def json_to_yolo(input_file_path, output_directory):
    data = json.load(open(input_file_path, encoding="utf-8"))  # 读取带有中文的文件
    image_width = data["imageWidth"]  # 获取json文件里图片的宽度
    image_height = data["imageHeight"]  # 获取json文件里图片的高度
    yolo_format_content = ''

    for shape in data["shapes"]:
        # 归一化坐标点,并计算中心点(cx, cy)、宽度和高度
        [[x1, y1], [x2, y2]] = shape['points']
        x1, x2 = x1 / image_width, x2 / image_width
        y1, y2 = y1 / image_height, y2 / image_height
        cx = (x1 + x2) / 2
        cy = (y1 + y2) / 2
        width = abs(x2 - x1)
        height = abs(y2 - y1)

        # 将数据组装成YOLO格式
        line = "%s %.4f %.4f %.4f %.4f\n" % (category_dict[shape['label']], cx, cy, width, height)  # 生成txt文件里每行的内容
        yolo_format_content += line

    # 生成txt文件的相应文件路径
    output_file_path = os.path.join(output_directory, os.path.basename(input_file_path).replace('json', 'txt'))
    with open(output_file_path, 'w', encoding='utf-8') as file_handle:
        file_handle.write(yolo_format_content)


input_directory = "E:/DataSet/test/labels/"
output_directory = "E:/DataSet/test/labels-yolo/"

file_list = os.listdir(input_directory)
json_file_list = [file for file in file_list if file.endswith(".json")]  # 获取所有json文件的路径

for json_file in json_file_list:
    json_to_yolo(os.path.join(input_directory, json_file), output_directory)

四、按比例划分数据集(训练、验证、测试)

如果需要将图片和标签数据集按比例划分为训练、验证、测试数据集,请参考以下博客。

参考博客《YOLO:VOC格式数据集转换为YOLO数据集格式》中的第2节。

相关推荐
魔乐社区14 分钟前
DeepSeek在昇腾上的模型部署 - 常见问题及解决方案
人工智能·深度学习·deepseek
夜幕龙26 分钟前
深度生成模型(二)——基本概念与数学建模
人工智能·深度学习·transformer
游王子31 分钟前
OpenCV(11):人脸检测、物体识别
人工智能·opencv·计算机视觉
山海青风33 分钟前
从零开始玩转TensorFlow:小明的机器学习故事 3
人工智能·机器学习·tensorflow
@心都34 分钟前
机器学习数学基础:35.效度
人工智能·机器学习
幻想趾于现实36 分钟前
傅里叶分析
人工智能
春末的南方城市43 分钟前
VidSketch:具有扩散控制的手绘草图驱动视频生成
人工智能·深度学习·计算机视觉·aigc
紫雾凌寒1 小时前
计算机视觉 |解锁视频理解三剑客——TimeSformer
python·深度学习·神经网络·计算机视觉·transformer·timesformer
Toky丶1 小时前
【文献阅读】A Survey on Model Compression for Large Language Models
人工智能·语言模型·自然语言处理
Williams101 小时前
解锁高效开发新姿势:Trae AI编辑器深度体验
人工智能·编辑器