大语言模型与多模态大模型loss计算

文章目录

前言

如果看了我前面文章,想必你基本对整个代码有了更深认识。实际上,大多大模型都是使用huggingface搭建,而大多LORA训练也是调用PEFT库。然而,LLaVA代码却没有相关VIT模型训练内容,也没有不同组合训练。而我也是想探索单独使用vit的lora训练、单独使用llm的lora训练或全都使用会有什么效果呢?因此,本篇文章将探索LLaVA如何按需构建LORA训练,我会给出如何构建参数与修改源码,也会给出我实验结果。实验结果表明,视觉、语言、映射三着结合训练基本没有效果,视觉与语言训练也不会有效果,而其它基本会有转好效果。

一、大语言模型loss计算

1、loss计算代码解读

我以llama3的loss计算方法来说明,大语言模型的loss计算逻辑,我们可以发现输出logits是取前n-1个位置内容,而lables是取了1:n的内容。如此,使用计算前面内容推理后面内容,假如你输出是5个可推理第6个token内容,如此类推就可以生成式的给出推理内容,这也是推理逐字生成方法,其代码如下图:

我们从代码中可已发现,大语言模型使用交叉熵来计算的,至于有关交叉熵相关原理,可自行参考其它博客内容。

2、构建模型输入内容与label标签

我给出大概loss计算标签,我们可以发现input_ids输入与labels是对应的,只是和我上面所说训练是错位计算交叉熵。我也整理了一份表格供读者参考。当然,我这里有问题可留言指正。

3、input_ids与labels格式

这里我以语言模型为例,huggingface训练输入input_ids与labels对应的id是一样的,只是再计算loss时候,模型输出减少了最后一位,而labesl去掉开始一个位置,以此达到了错位计算loss的目的,具体可查看如下图示。

二、多模态大模型loss计算方法

1、多模态loss计算代码解读

多模态大模型都是依附大语言模型来获得输出内容。尽然如此,多模态大模型的loss计算方法和我上上面说的llama3的loss计算方法一致,都是使用交叉熵方法来求解loss,也是输出logits是取前n-1个位置内容,而lables是取了1:n的内容。如此,使用计算前面内容推理后面内容,假如你输出是5个可推理第6个token内容,如此类推就可以生成式的给出推理内容,这也是推理逐字生成方法,其代码如下图:

这里重点强调:-100位置不需要计算loss,我非常肯定!!

2、多模态输入内容

当然,多模态和大语言模型还是有区别,主要在于多了其它编码模块,如图像多模态就是多了图像编码器将输出内容作为大语言输入ids。再进入大语言模型输入之前模型的输入内容如下图:

从图上可知,有了图像占位内容,而labels不需要计算loss为-100.

2、大语言模型输入内容

我再之前以说过,多模态大模型是依附大语言模型输入。自然输入大语言模型内容格式需和大语言模型一样,然而图像需要经过图像编码encoder模块将图像转为embedding,在与文本进行cat,我这下面是个大致的示意表格,如下:

3、图像embending如何嵌入文本embeding

这里,我借助b站的up所说,可参考下图内容。b站参考连接这里

拼接位置:

拼接embeding:

注:embedding的拼接!

相关推荐
Blossom.1183 分钟前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
天天扭码7 分钟前
AI时代,前端如何处理大模型返回的多模态数据?
前端·人工智能·面试
难受啊马飞2.017 分钟前
如何判断 AI 将优先自动化哪些任务?
运维·人工智能·ai·语言模型·程序员·大模型·大模型学习
顺丰同城前端技术团队18 分钟前
掌握未来:构建专属领域的大模型与私有知识库——从部署到微调的全面指南
人工智能·deepseek
许泽宇的技术分享21 分钟前
用.NET9+Blazor+Semantic Kernel,打造企业级AI知识库和智能体平台——AntSK深度解读
人工智能
烟锁池塘柳040 分钟前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
一尘之中1 小时前
全素山药开发指南:从防痒处理到高可用食谱架构
人工智能
加油吧zkf1 小时前
水下目标检测:突破与创新
人工智能·计算机视觉·目标跟踪
加油吧zkf1 小时前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
峙峙峙2 小时前
线性代数--AI数学基础复习
人工智能·线性代数