文章目录
-
-
- [1. 数据准备](#1. 数据准备)
-
- [示例:加载 CIFAR-10 数据集](#示例:加载 CIFAR-10 数据集)
- [2. 模型定义](#2. 模型定义)
- [3. 损失函数和优化器](#3. 损失函数和优化器)
- [4. 训练循环](#4. 训练循环)
- [5. 评估和测试](#5. 评估和测试)
- [6. 保存和加载模型](#6. 保存和加载模型)
- [7. 完整案例:训练 CIFAR-10 分类模型](#7. 完整案例:训练 CIFAR-10 分类模型)
- 解释
-
在 PyTorch 中,模型训练通常遵循一个标准的流程,包括数据准备、模型定义、损失函数和优化器的选择、训练循环以及评估和测试。以下是一个详细的步骤介绍:
1. 数据准备
首先,需要准备好训练和测试数据。通常使用 torchvision.datasets
加载内置数据集,或者使用自定义数据集。数据加载后,使用 torch.utils.data.DataLoader
进行批量加载。
示例:加载 CIFAR-10 数据集
python
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# 定义图像转换
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
# 使用 DataLoader 加载数据
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
2. 模型定义
定义一个神经网络模型,通常继承自 torch.nn.Module
,并在 __init__
方法中定义网络层,在 forward
方法中定义前向传播过程。
示例:定义一个简单的卷积神经网络
python
import torch.nn as nn
import torch.nn.functional as F
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(64 * 56 * 56, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model = SimpleCNN()
3. 损失函数和优化器
选择合适的损失函数和优化器。常见的损失函数包括 nn.CrossEntropyLoss
用于分类任务,nn.MSELoss
用于回归任务。优化器通常使用 torch.optim
模块中的优化器,如 optim.SGD
或 optim.Adam
。
示例:定义损失函数和优化器
python
import torch.optim as optim
# 定义损失函数
criterion = nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)
4. 训练循环
编写训练循环,包括前向传播、计算损失、反向传播和参数更新。通常还会包括模型保存和日志记录。
示例:训练循环
python
def train(model, train_loader, criterion, optimizer, num_epochs):
model.train()
for epoch in range(num_epochs):
for images, labels in train_loader:
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
# 训练模型
train(model, train_loader, criterion, optimizer, num_epochs=10)
5. 评估和测试
在训练完成后,使用测试数据集评估模型的性能。通常包括计算准确率、损失等指标。
示例:评估模型
python
def evaluate(model, test_loader, criterion):
model.eval()
total_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
outputs = model(images)
loss = criterion(outputs, labels)
total_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Test Loss: {total_loss/len(test_loader):.4f}, Accuracy: {100 * correct / total:.2f}%')
# 评估模型
evaluate(model, test_loader, criterion)
6. 保存和加载模型
训练完成后,可以保存模型参数以便后续使用。
示例:保存和加载模型
python
# 保存模型
torch.save(model.state_dict(), 'model.pth')
# 加载模型
model = SimpleCNN()
model.load_state_dict(torch.load('model.pth'))
7. 完整案例:训练 CIFAR-10 分类模型
python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# 1. 数据准备
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 2. 模型定义
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(64 * 56 * 56, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model = SimpleCNN()
# 3. 损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 4. 训练循环
def train(model, train_loader, criterion, optimizer, num_epochs):
model.train()
for epoch in range(num_epochs):
for images, labels in train_loader:
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
train(model, train_loader, criterion, optimizer, num_epochs=10)
# 5. 评估和测试
def evaluate(model, test_loader, criterion):
model.eval()
total_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
outputs = model(images)
loss = criterion(outputs, labels)
total_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Test Loss: {total_loss/len(test_loader):.4f}, Accuracy: {100 * correct / total:.2f}%')
evaluate(model, test_loader, criterion)
# 6. 保存和加载模型
torch.save(model.state_dict(), 'model.pth')
model = SimpleCNN()
model.load_state_dict(torch.load('model.pth'))
解释
- 数据准备:加载 CIFAR-10 数据集,并应用一系列图像转换操作。
- 模型定义 :定义一个简单的卷积神经网络
SimpleCNN
。 - 损失函数和优化器:选择交叉熵损失函数和 Adam 优化器。
- 训练循环:编写训练循环,包括前向传播、计算损失、反向传播和参数更新。
- 评估和测试:使用测试数据集评估模型的性能,并计算准确率和损失。
- 保存和加载模型:训练完成后,保存模型参数以便后续使用。