Python基于TensorFlow实现卷积神经网络-双向长短时记忆循环神经网络分类模型(CNN-BiLSTM分类算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解 ),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1 . 项目背景

随着人工智能技术的快速发展,深度学习已经成为处理复杂数据集的关键工具之一。其中,卷积神经网络 (Convolutional Neural Networks, CNNs) 和长短时记忆网络 (Long Short-Term Memory, LSTM) 是两种广泛应用的深度学习模型。CNN 能够有效地捕捉局部特征和空间结构,而 LSTM 则擅长处理序列数据中的长期依赖关系。将这两种模型结合起来,形成 CNN-BiLSTM 架构,可以同时利用它们的优势,以处理包含时空特征的数据集。

本项目基于TensorFlow实现卷积神经网络-双向长短时记忆循环神经网络分类模型(CNN-BiLSTM分类算法)项目实战。

2 . 数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

|------------|--------------|------------|
| 编号 | 变量名称 | 描述 |
| 1 | x1 | |
| 2 | x2 | |
| 3 | x3 | |
| 4 | x4 | |
| 5 | x5 | |
| 6 | x6 | |
| 7 | x7 | |
| 8 | x8 | |
| 9 | x9 | |
| 10 | x10 | |
| 11 | y | 因变量 |

数据详情如下(部分展示):

3. 数据预处理

3.1 用P andas 工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

3. 3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4. 探索性数据分析

4 . 1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4 .2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4 .3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5. 特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

数据样本增加维度后的数据形状:

6. 构建 卷积神经网络-双向长短时记忆循环神经网络分类模型

主要使用CNN-BiLSTM分类算法,用于目标分类。

6. 1 构建模型

|------------|----------------|------------|
| 编号 | 模型名称 | 参数 |
| 1 | CNN-BiLSTM分类模型 | filters=5 |
| 2 | CNN-BiLSTM分类模型 | units=64 |
| 3 | CNN-BiLSTM分类模型 | epochs=60 |

6. 2 模型摘要信息

6. 3 模型网络结构

6. 4 模型训练集测试集损失和准确率曲线图

7 . 模型评估

7 .1 评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

|----------------|--------------|-------------|
| 模型名称 | 指标名称 | 指标值 |
| 测试集 |||
| CNN-BiLSTM分类模型 | 准确率 | 0.9975 |
| CNN-BiLSTM分类模型 | 查准率 | 1.0 |
| CNN-BiLSTM分类模型 | 查全率 | 0.9953 |
| CNN-BiLSTM分类模型 | F1分值 | 0.9976 |

从上表可以看出,F1分值为0.9976,说明模型效果很好。

关键代码如下:

7. 2 分类报告

从上图可以看出,分类为0的F1分值为1.00;分类为1的F1分值为1.00。

7. 3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有0个样本;实际为1预测不为1的 有1个样本,整体预测准确率良好。

8. 结论与展望

综上所述,本文采用了卷积神经网络-双向长短时记忆循环神经网络分类算法来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

python 复制代码
# kind='bar' 绘制柱状图
df['y'].value_counts().plot(kind='bar')  # 绘图
plt.xlabel("y变量")  # 设置x轴名称
plt.ylabel("数量")  # 设置y轴名称
plt.title('y变量柱状图')  # 设置标题名称
plt.show()  # 展示图片

# y=1样本x1变量分布直方图
fig = plt.figure(figsize=(8, 5))  # 设置画布大小
plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
data_tmp = df.loc[df['y'] == 1, 'x1']  # 过滤出y=1的样本
# 绘制直方图  bins:控制直方图中的区间个数 auto为自动填充个数  color:指定柱子的填充色
plt.hist(data_tmp, bins='auto', color='g')  # 绘图
plt.xlabel('x1')  # 设置x轴名称
plt.ylabel('数量')  # 设置y轴名称

# 获取方式:
 
# 项目实战合集导航:
 
# https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
print('***********************查看训练集的形状**************************')
print(X_train.shape)  # 查看训练集的形状

plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
data_tmp = df.loc[df['y'] == 1, 'x1']  # 过滤出y=1的样本
# 绘制直方图  bins:控制直方图中的区间个数 auto为自动填充个数  color:指定柱子的填充色
plt.hist(data_tmp, bins='auto', color='g')  # 绘图

X_test = layers.Lambda(lambda X_test: K.expand_dims(X_test, axis=-1))(X_test)  # 增加维度
print('***********************查看测试集的形状**************************')
print(X_test.shape)  # 查看测试集的形状
相关推荐
懒大王爱吃狼32 分钟前
Python教程:python枚举类定义和使用
开发语言·前端·javascript·python·python基础·python编程·python书籍
秃头佛爷2 小时前
Python学习大纲总结及注意事项
开发语言·python·学习
深度学习lover3 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
API快乐传递者4 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
阡之尘埃6 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
丕羽9 小时前
【Pytorch】基本语法
人工智能·pytorch·python
bryant_meng9 小时前
【python】Distribution
开发语言·python·分布函数·常用分布
m0_5945263010 小时前
Python批量合并多个PDF
java·python·pdf
工业互联网专业10 小时前
Python毕业设计选题:基于Hadoop的租房数据分析系统的设计与实现
vue.js·hadoop·python·flask·毕业设计·源码·课程设计
钱钱钱端11 小时前
【压力测试】如何确定系统最大并发用户数?
自动化测试·软件测试·python·职场和发展·压力测试·postman