python 数据可视化折线图练习(下:代码演示)

根据上篇对三国疫情情况数据的罗列,构建折线图完成数据展示。(示例如下)

接下来是具体代码演示

python 复制代码
import  json
from pyecharts.charts  import  Line
from pyecharts.options import TitleOpts , LegendOpts , ToolboxOpts ,VisualMapOpts , TooltipOpts , LabelOpts


#折线图开发
f_us = open("D://美国.txt" , "r" , encoding= "UTF-8")
us_data = f_us.read() # 美国的全部内容

f_jp = open("D://日本.txt" , "r" , encoding= "UTF-8")
jp_data = f_jp.read() # 日本的全部内容

f_in = open("D://印度.txt" , "r" , encoding= "UTF-8")
in_data = f_in.read() # 印度的全部内容

#去掉开头不合json格式的开头内容
us_data = us_data.replace("jsonp_1629344292311_69436(" , "")
jp_data = jp_data.replace("jsonp_1629350871167_29498(" , "")
in_data = in_data.replace("jsonp_1629350745930_63180(" , "")
#去掉结尾不合json格式的开头内容(考虑到在json数据中也可能出现");"的内容)
# us_data.replace(");" , "")  应该在切片后在进行replace
us_data = us_data[: -2]
jp_data = jp_data[: -2]
in_data = in_data[: -2]
# json转换为python字典
us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)

#获取trend key
us_trend_data = us_dict["data"][0]["trend"]
jp_trend_data = jp_dict["data"][0]["trend"]
in_trend_data = in_dict["data"][0]["trend"]

us_x_data = us_trend_data["updateDate"][:314]
jp_x_data = jp_trend_data["updateDate"][:314]
in_x_data = in_trend_data["updateDate"][:314]

us_y_data = us_trend_data["list"][0]["data"][:314]
jp_y_data = jp_trend_data["list"][0]["data"][:314]
in_y_data = in_trend_data["list"][0]["data"][:314]

line = Line()
line.add_xaxis(us_x_data)  #x轴是公用的,所以只使用一个国家的数据即可

line.add_yaxis("美国确诊人数", us_y_data  , label_opts= LabelOpts(is_show=False)) #表内是否显示具体数值
line.add_yaxis("日本确诊人数", jp_y_data  ,  label_opts= LabelOpts(is_show=False))
line.add_yaxis("印度确诊人数", in_y_data , label_opts= LabelOpts(is_show=False))

#添加表格样式
line.set_global_opts(
    title_opts=TitleOpts(title="三个国家疫情情况统计", pos_left="center", pos_bottom="1%"),
        legend_opts = LegendOpts(is_show= True),
        toolbox_opts = ToolboxOpts(is_show= True),
        visualmap_opts = VisualMapOpts(is_show= True),
        tooltip_opts = TooltipOpts(is_show= True),

)

#调用render方法 , 生成图表
line.render()

f_us.close()
f_in.close()
f_jp.close()

最后是三大板块的主要归纳,可对照学习

1.读取三国数据全部内容

2.获取日期数据,用于x轴,取2020年(下标为341)

3.表格建立 + 添加表格样式

相关推荐
游客5206 分钟前
opencv中的各种滤波器简介
图像处理·人工智能·python·opencv·计算机视觉
Eric.Lee20219 分钟前
moviepy将图片序列制作成视频并加载字幕 - python 实现
开发语言·python·音视频·moviepy·字幕视频合成·图像制作为视频
Dontla14 分钟前
vscode怎么设置anaconda python解释器(anaconda解释器、vscode解释器)
ide·vscode·python
qq_529025291 小时前
Torch.gather
python·深度学习·机器学习
数据小爬虫@1 小时前
如何高效利用Python爬虫按关键字搜索苏宁商品
开发语言·爬虫·python
Cachel wood1 小时前
python round四舍五入和decimal库精确四舍五入
java·linux·前端·数据库·vue.js·python·前端框架
終不似少年遊*2 小时前
pyecharts
python·信息可视化·数据分析·学习笔记·pyecharts·使用技巧
Python之栈2 小时前
【无标题】
数据库·python·mysql
陆沙2 小时前
生物信息学导论-北大-RNA-Seq数据分析
数据分析·生物信息·生信
袁袁袁袁满2 小时前
100天精通Python(爬虫篇)——第113天:‌爬虫基础模块之urllib详细教程大全
开发语言·爬虫·python·网络爬虫·爬虫实战·urllib·urllib模块教程