python 数据可视化折线图练习(下:代码演示)

根据上篇对三国疫情情况数据的罗列,构建折线图完成数据展示。(示例如下)

接下来是具体代码演示

python 复制代码
import  json
from pyecharts.charts  import  Line
from pyecharts.options import TitleOpts , LegendOpts , ToolboxOpts ,VisualMapOpts , TooltipOpts , LabelOpts


#折线图开发
f_us = open("D://美国.txt" , "r" , encoding= "UTF-8")
us_data = f_us.read() # 美国的全部内容

f_jp = open("D://日本.txt" , "r" , encoding= "UTF-8")
jp_data = f_jp.read() # 日本的全部内容

f_in = open("D://印度.txt" , "r" , encoding= "UTF-8")
in_data = f_in.read() # 印度的全部内容

#去掉开头不合json格式的开头内容
us_data = us_data.replace("jsonp_1629344292311_69436(" , "")
jp_data = jp_data.replace("jsonp_1629350871167_29498(" , "")
in_data = in_data.replace("jsonp_1629350745930_63180(" , "")
#去掉结尾不合json格式的开头内容(考虑到在json数据中也可能出现");"的内容)
# us_data.replace(");" , "")  应该在切片后在进行replace
us_data = us_data[: -2]
jp_data = jp_data[: -2]
in_data = in_data[: -2]
# json转换为python字典
us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)

#获取trend key
us_trend_data = us_dict["data"][0]["trend"]
jp_trend_data = jp_dict["data"][0]["trend"]
in_trend_data = in_dict["data"][0]["trend"]

us_x_data = us_trend_data["updateDate"][:314]
jp_x_data = jp_trend_data["updateDate"][:314]
in_x_data = in_trend_data["updateDate"][:314]

us_y_data = us_trend_data["list"][0]["data"][:314]
jp_y_data = jp_trend_data["list"][0]["data"][:314]
in_y_data = in_trend_data["list"][0]["data"][:314]

line = Line()
line.add_xaxis(us_x_data)  #x轴是公用的,所以只使用一个国家的数据即可

line.add_yaxis("美国确诊人数", us_y_data  , label_opts= LabelOpts(is_show=False)) #表内是否显示具体数值
line.add_yaxis("日本确诊人数", jp_y_data  ,  label_opts= LabelOpts(is_show=False))
line.add_yaxis("印度确诊人数", in_y_data , label_opts= LabelOpts(is_show=False))

#添加表格样式
line.set_global_opts(
    title_opts=TitleOpts(title="三个国家疫情情况统计", pos_left="center", pos_bottom="1%"),
        legend_opts = LegendOpts(is_show= True),
        toolbox_opts = ToolboxOpts(is_show= True),
        visualmap_opts = VisualMapOpts(is_show= True),
        tooltip_opts = TooltipOpts(is_show= True),

)

#调用render方法 , 生成图表
line.render()

f_us.close()
f_in.close()
f_jp.close()

最后是三大板块的主要归纳,可对照学习

1.读取三国数据全部内容

2.获取日期数据,用于x轴,取2020年(下标为341)

3.表格建立 + 添加表格样式

相关推荐
2401_8414956435 分钟前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
Adorable老犀牛1 小时前
阿里云-ECS实例信息统计并发送统计报告到企业微信
python·阿里云·云计算·企业微信
倔强青铜三1 小时前
苦练Python第66天:文件操作终极武器!shutil模块完全指南
人工智能·python·面试
倔强青铜三1 小时前
苦练Python第65天:CPU密集型任务救星!多进程multiprocessing模块实战解析,攻破GIL限制!
人工智能·python·面试
Panda__Panda1 小时前
docker项目打包演示项目(数字排序服务)
运维·javascript·python·docker·容器·c#
Lris-KK2 小时前
力扣Hot100--94.二叉树的中序遍历、144.二叉树的前序遍历、145.二叉树的后序遍历
python·算法·leetcode
zy_destiny3 小时前
【工业场景】用YOLOv8实现抽烟识别
人工智能·python·算法·yolo·机器学习·计算机视觉·目标跟踪
(●—●)橘子……3 小时前
记力扣2009:使数组连续的最少操作数 练习理解
数据结构·python·算法·leetcode
nueroamazing4 小时前
PPT-EA:PPT自动生成器
vue.js·python·语言模型·flask·大模型·项目·ppt
一壶浊酒..4 小时前
python 爬取百度图片
开发语言·python·百度