Spark

Spark工作原理及基础概念(超详细!)_spark原理-CSDN博客

初识 Spark - 7000字+15张图解,学习 Spark 入门基础知识-腾讯云开发者社区-腾讯云

Spark基本概念

分布式并行计算框架

Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发的通用内存并行计算框架,借鉴了MapReduce之上发展而来的,继承了其分布式并行计算的优点并改进了MapReduce明显的缺陷。使用场景如下:

  • 复杂的批量处理(Batch Data Processing),偏重点在于处理海量数据的能力,至于处理速度可忍受,通常的时间可能是在数十分钟到数小时;
  • 基于历史数据的交互式查询(Interactive Query),通常的时间在数十秒到数十分钟之间
  • 基于实时数据流的数据处理(Streaming Data Processing),通常在数百毫秒到数秒之间
  • Spark 已经成为大数据领域中必备的计算引擎框架
  • Spark 已经基本替代了传统的 MapReduce 离线计算框架和 Storm 流式实时计算框架

1,Spark 的特性

1,Simple 简单易用,spark封装了java python SQL等语言API

2,Fast 比MR快很多

3,Scalable(可融合性)。 使用Hadoop YARN 作用资源管理及调度器

4,Unified(统一通用)。之前离线任务计算用MR,实时流任务计算用storm,这个都支持

2,优势

1,高性能,MR计算结果放在HDFS磁盘上,Spark计算结果放在内存中,内存不够,放磁盘中

3,Spark 的生态圈(组成模块)

4,Spark 的运行原理

1,Spark 的运行模式

2,Spark 的集群架构及角色

Spark 的集群架构主要由 Cluster Manager(集群资源管理器)、Worker (工作节点)、Executor(执行器)、Driver(驱动器)、Application(应用程序)共五部分角色组成


spark与hive结合

两条路线

Spark On Hive (Hive只用于连接数据源)

Hive On Spark

谁在前谁负责解析sql,最终的执行逻辑都是RDD(Spark代替了MR)

代码示例

jar依赖

core 对应RDD

sql

相关推荐
DavidSoCool1 小时前
Elasticsearch Java API Client [8.17] 使用
java·大数据·elasticsearch
用户199701080181 小时前
淘宝买家/卖家订单列表、订单详情、订单物流 API 接口全攻略
大数据
Arbori_262151 小时前
大数据 spark hive 总结
大数据·hive·spark
阿里云大数据AI技术1 小时前
中免日上使用阿里云向量检索服务 Milvus 版搭建在线推荐系统
大数据
smileNicky2 小时前
分布式与主流消息中间件总览
分布式
SYKMI2 小时前
关于分布式的误区
分布式
快乐非自愿3 小时前
分布式锁—Redisson的同步器组件
分布式·wpf
m0_748251723 小时前
Python大数据可视化:基于python大数据的电脑硬件推荐系统_flask+Hadoop+spider
大数据·python·flask
kngines3 小时前
【实战ES】实战 Elasticsearch:快速上手与深度实践-5.1.2基于Painless脚本的日志告警
大数据·elasticsearch·搜索引擎
caihuayuan54 小时前
「mysql」Mac mysql一路畅通式安装
java·大数据·spring boot·后端·课程设计