NVIDIA Hands-on Lab——Building RAG Agents with LLMs

NVIDIA DLI RAG课程(Course Detail | NVIDIA ),并获得该课程证书。

1 07的ipynb文件中设定,使用这两个模型配置

复制代码
embedder = NVIDIAEmbeddings(model="nvidia/nv-embed-v1", truncate="END")
# ChatNVIDIA.get_available_models()
instruct_llm = ChatNVIDIA(model="mistralai/mixtral-8x7b-instruct-v0.1")

大约会在Part3的 Task3出错,否则会早早出错。

08不用改

运行完 所有cell后,点击下面的绿色的 Link To Gradio Frontend 文字,跳转到我们服务启动的页面

35的ipynb文件脚本需要修改几处:

从07/08两个脚本中复制代码出来

从07 Part3复制如下

复制代码
chat_prompt = ChatPromptTemplate.from_messages([("system",
    "You are a document chatbot. Help the user as they ask questions about documents."
    " User messaged just asked: {input}\n\n"
    " From this, we have retrieved the following potentially-useful info: "
    " Conversation History Retrieval:\n{history}\n\n"
    " Document Retrieval:\n{context}\n\n"
    " (Answer only from retrieval. Only cite sources that are used. Make your response conversational.)"
), ('user', '{input}')])


embedder = NVIDIAEmbeddings(model="nvidia/nv-embed-v1", truncate="END")

08 Part3 Task1 复制如下

复制代码
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
from langchain_community.vectorstores import FAISS

docstore = FAISS.load_local("docstore_index", embedder, allow_dangerous_deserialization=True)
docs = list(docstore.docstore._dict.values())

再手写补充如下

复制代码
add_routes(
    app,
    docstore.as_retriever(),
    path="/retriever",
)


add_routes(
    app,
    chat_prompt | llm,
    path="/generator",
)

然后将 08 中的问题复制粘贴到 到输入框中,运行即可。

相关推荐
liliangcsdn2 小时前
llama.cpp reranking源码分析
llama
玲小珑3 小时前
LangChain.js 完全开发手册(三)Memory 系统与对话状态管理
前端·langchain·ai编程
九仞山15 小时前
LangChain4j入门一:LangChain4j简介及核心概念
java·ai·langchain·agents
聚客AI21 小时前
💡为什么你的RAG回答总是胡言乱语?致命瓶颈在数据预处理层
人工智能·langchain·llm
go&Python3 天前
检索模型与RAG
开发语言·python·llama
教练我想打篮球_基本功重塑版3 天前
L angChain 加载大模型
python·langchain
LiRuiJie3 天前
基于LangChain + Milvus 实现RAG
python·langchain·milvus·rag
RainbowSea3 天前
1. LangChain4J 理论概述
java·langchain·llm
RainbowSea3 天前
2. LangChain4J 中的 Hello World
langchain·llm·ai编程
修一呀4 天前
[大模型微调]基于llama_factory用 LoRA 高效微调 Qwen3 医疗大模型:从原理到实现
人工智能·llama·大模型微调