NVIDIA Hands-on Lab——Building RAG Agents with LLMs

NVIDIA DLI RAG课程(Course Detail | NVIDIA ),并获得该课程证书。

1 07的ipynb文件中设定,使用这两个模型配置

复制代码
embedder = NVIDIAEmbeddings(model="nvidia/nv-embed-v1", truncate="END")
# ChatNVIDIA.get_available_models()
instruct_llm = ChatNVIDIA(model="mistralai/mixtral-8x7b-instruct-v0.1")

大约会在Part3的 Task3出错,否则会早早出错。

08不用改

运行完 所有cell后,点击下面的绿色的 Link To Gradio Frontend 文字,跳转到我们服务启动的页面

35的ipynb文件脚本需要修改几处:

从07/08两个脚本中复制代码出来

从07 Part3复制如下

复制代码
chat_prompt = ChatPromptTemplate.from_messages([("system",
    "You are a document chatbot. Help the user as they ask questions about documents."
    " User messaged just asked: {input}\n\n"
    " From this, we have retrieved the following potentially-useful info: "
    " Conversation History Retrieval:\n{history}\n\n"
    " Document Retrieval:\n{context}\n\n"
    " (Answer only from retrieval. Only cite sources that are used. Make your response conversational.)"
), ('user', '{input}')])


embedder = NVIDIAEmbeddings(model="nvidia/nv-embed-v1", truncate="END")

08 Part3 Task1 复制如下

复制代码
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
from langchain_community.vectorstores import FAISS

docstore = FAISS.load_local("docstore_index", embedder, allow_dangerous_deserialization=True)
docs = list(docstore.docstore._dict.values())

再手写补充如下

复制代码
add_routes(
    app,
    docstore.as_retriever(),
    path="/retriever",
)


add_routes(
    app,
    chat_prompt | llm,
    path="/generator",
)

然后将 08 中的问题复制粘贴到 到输入框中,运行即可。

相关推荐
Dontla2 小时前
黑马大模型RAG与Agent智能体实战教程LangChain提示词——6、提示词工程(提示词优化、few-shot、金融文本信息抽取案例、金融文本匹配案例)
redis·金融·langchain
JaydenAI3 小时前
[LangChain之链]LangChain的Chain——由Runnable构建的管道
python·langchain
草帽lufei3 小时前
LangChain 框架核心向量存储
langchain
猫头虎3 小时前
如何使用Docker部署OpenClaw汉化中文版?
运维·人工智能·docker·容器·langchain·开源·aigc
qq_5470261794 小时前
LangChain 1.0 核心概念
运维·服务器·langchain
uXrvbWJGleS4 小时前
三相两电平整流器Simulink仿真探究
langchain
猫头虎4 小时前
手动部署开源OpenClaw汉化中文版过程中常见问题排查手册
人工智能·langchain·开源·github·aigc·agi·openclaw
程序员ken5 小时前
深入理解大语言模型(8) 使用 LangChain 开发应用程序之上下文记忆
人工智能·python·语言模型·langchain
一切尽在,你来16 小时前
第二章 预告内容
人工智能·langchain·ai编程
一切尽在,你来20 小时前
1.1 AI大模型应用开发和Langchain的关系
人工智能·langchain