NVIDIA Hands-on Lab——Building RAG Agents with LLMs

NVIDIA DLI RAG课程(Course Detail | NVIDIA ),并获得该课程证书。

1 07的ipynb文件中设定,使用这两个模型配置

embedder = NVIDIAEmbeddings(model="nvidia/nv-embed-v1", truncate="END")
# ChatNVIDIA.get_available_models()
instruct_llm = ChatNVIDIA(model="mistralai/mixtral-8x7b-instruct-v0.1")

大约会在Part3的 Task3出错,否则会早早出错。

08不用改

运行完 所有cell后,点击下面的绿色的 Link To Gradio Frontend 文字,跳转到我们服务启动的页面

35的ipynb文件脚本需要修改几处:

从07/08两个脚本中复制代码出来

从07 Part3复制如下

chat_prompt = ChatPromptTemplate.from_messages([("system",
    "You are a document chatbot. Help the user as they ask questions about documents."
    " User messaged just asked: {input}\n\n"
    " From this, we have retrieved the following potentially-useful info: "
    " Conversation History Retrieval:\n{history}\n\n"
    " Document Retrieval:\n{context}\n\n"
    " (Answer only from retrieval. Only cite sources that are used. Make your response conversational.)"
), ('user', '{input}')])


embedder = NVIDIAEmbeddings(model="nvidia/nv-embed-v1", truncate="END")

08 Part3 Task1 复制如下

from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
from langchain_community.vectorstores import FAISS

docstore = FAISS.load_local("docstore_index", embedder, allow_dangerous_deserialization=True)
docs = list(docstore.docstore._dict.values())

再手写补充如下

add_routes(
    app,
    docstore.as_retriever(),
    path="/retriever",
)


add_routes(
    app,
    chat_prompt | llm,
    path="/generator",
)

然后将 08 中的问题复制粘贴到 到输入框中,运行即可。

相关推荐
Guofu_Liao7 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
ZHOU_WUYI11 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
AI_小站16 小时前
RAG 示例:使用 langchain、Redis、llama.cpp 构建一个 kubernetes 知识库问答
人工智能·程序人生·langchain·kubernetes·llama·知识库·rag
Guofu_Liao16 小时前
Llama模型文件介绍
人工智能·llama
Donvink20 小时前
多模态大语言模型——《动手学大模型》实践教程第六章
人工智能·深度学习·语言模型·自然语言处理·llama
Donvink1 天前
大模型安全和越狱攻击——《动手学大模型》实践教程第五章
深度学习·安全·语言模型·llama
Donvink1 天前
大模型智能体安全——《动手学大模型》实践教程第七章
深度学习·安全·语言模型·prompt·llama
慢热型网友.1 天前
【项目实战】基于 LLaMA-Factory 通过 LoRA 微调 Qwen2
llama
机器学习是魔鬼1 天前
LLaMA-Factory 上手即用教程
llama·模型训练·ai功能岛·矩池云
Galeoto1 天前
fine tuning with llama-factory
llama