机器学习有哪几种学习方法?

机器学习是人工智能的一个分支,它使计算机能够通过数据学习并做出决策或预测,而不是通过明确的编程指令。主要的机器学习类型包括:

监督学习:

  • 定义:在监督学习中,算法从标记的训练数据中学习,每个样本都有一个对应的标签或结果。监督学习的目标是训练出一个模型,能够对新的、未见过的数据进行准确的预测或分类。

  • 常见算法:线性回归、逻辑回归、支持向量机、决策树和随机森林等。

无监督学习:

  • 定义:在无监督学习中,算法处理的是没有标记的数据,目标是发现数据中的模式、关联或结构。无监督学习算法在数据中寻找隐藏的模式或结构。

  • 常见任务:聚类、关联规则学习和降维等。

半监督学习:

  • 定义:介于监督学习和无监督学习之间,其中训练数据包含标记样本和未标记样本。算法尝试利用未标记的数据来提高学习效果,通常这种方法在标记数据稀缺或成本高昂时很有用。

强化学习:

  • 定义:涉及到一个智能体(agent)在与环境交互的过程中学习最佳行为或策略,以最大化累积奖励。强化学习不同于监督学习,因为它不直接告诉智能体应该做什么,而是让智能体自己探索。

另外还有迁移学习、在线学习、批处理学习、多任务学习、多模态学习、进化学习......

相关推荐
OpenCSG6 分钟前
对比分析:CSGHub vs. Hugging Face:模型管理平台选型对
人工智能·架构·开源
云上凯歌7 分钟前
传统老旧系统的“AI 涅槃”:从零构建企业级 Agent 集群实战指南
人工智能
cskywit16 分钟前
破解红外“魅影”难题:WMRNet 如何以频率分析与二阶差分重塑小目标检测?
人工智能·深度学习
无名修道院25 分钟前
AI大模型应用开发-RAG 基础:向量数据库(FAISS/Milvus)、文本拆分、相似性搜索(“让模型查资料再回答”)
人工智能·向量数据库·rag·ai大模型应用开发
自可乐26 分钟前
Milvus向量数据库/RAG基础设施学习教程
数据库·人工智能·python·milvus
Loo国昌33 分钟前
【大模型应用开发】第二阶段:语义理解应用:文本分类与聚类 (Text Classification & Clustering)
人工智能·分类·聚类
XX風40 分钟前
3.2K-means
人工智能·算法·kmeans
feasibility.1 小时前
在OpenCode使用skills搭建基于LLM的dify工作流
人工智能·低代码·docker·ollama·skills·opencode·智能体/工作流
进击monkey1 小时前
PandaWiki:开源企业级AI知识库工具,基于RAG架构的私有化部署方案
人工智能·开源
zy_destiny1 小时前
【工业场景】用YOLOv26实现桥梁检测
人工智能·深度学习·yolo·机器学习·计算机视觉·目标跟踪