机器学习有哪几种学习方法?

机器学习是人工智能的一个分支,它使计算机能够通过数据学习并做出决策或预测,而不是通过明确的编程指令。主要的机器学习类型包括:

监督学习:

  • 定义:在监督学习中,算法从标记的训练数据中学习,每个样本都有一个对应的标签或结果。监督学习的目标是训练出一个模型,能够对新的、未见过的数据进行准确的预测或分类。

  • 常见算法:线性回归、逻辑回归、支持向量机、决策树和随机森林等。

无监督学习:

  • 定义:在无监督学习中,算法处理的是没有标记的数据,目标是发现数据中的模式、关联或结构。无监督学习算法在数据中寻找隐藏的模式或结构。

  • 常见任务:聚类、关联规则学习和降维等。

半监督学习:

  • 定义:介于监督学习和无监督学习之间,其中训练数据包含标记样本和未标记样本。算法尝试利用未标记的数据来提高学习效果,通常这种方法在标记数据稀缺或成本高昂时很有用。

强化学习:

  • 定义:涉及到一个智能体(agent)在与环境交互的过程中学习最佳行为或策略,以最大化累积奖励。强化学习不同于监督学习,因为它不直接告诉智能体应该做什么,而是让智能体自己探索。

另外还有迁移学习、在线学习、批处理学习、多任务学习、多模态学习、进化学习......

相关推荐
秋邱7 小时前
AI + 社区服务:智慧老年康养助手(轻量化落地方案)
人工智能·python·重构·ar·推荐算法·agi
leijiwen7 小时前
Bsin X BDCM:从流量驱动到价值激励驱动的智能增长引擎
大数据·人工智能·web3
人工智能训练7 小时前
Linux 系统核心快捷键表(可打印版)
linux·运维·服务器·人工智能·ubuntu·容器·openeuler
得贤招聘官7 小时前
AI 重构招聘:从效率到精准决策
人工智能·重构
高锰酸钾_7 小时前
机器学习基础 | KNN(K-近邻)
人工智能·机器学习
人邮异步社区7 小时前
想要系统地学习扩散模型,应该怎么去做?
人工智能·学习·程序员·扩散模型
1***y1787 小时前
区块链跨链桥、 跨链桥到底在解决什么问题?
大数据·人工智能·区块链
腾飞开源7 小时前
09_Spring AI 干货笔记之多模态
图像处理·人工智能·spring ai·多模态大语言模型·多模态api·媒体输入·文本响应
CM莫问7 小时前
详解机器学习经典模型(原理及应用)——岭回归
人工智能·python·算法·机器学习·回归
七牛云行业应用7 小时前
告别RLHF?DeepSeek过程奖励(PRM)架构解析与推理数据流设计
人工智能·强化学习·大模型架构·deepseek