机器学习有哪几种学习方法?

机器学习是人工智能的一个分支,它使计算机能够通过数据学习并做出决策或预测,而不是通过明确的编程指令。主要的机器学习类型包括:

监督学习:

  • 定义:在监督学习中,算法从标记的训练数据中学习,每个样本都有一个对应的标签或结果。监督学习的目标是训练出一个模型,能够对新的、未见过的数据进行准确的预测或分类。

  • 常见算法:线性回归、逻辑回归、支持向量机、决策树和随机森林等。

无监督学习:

  • 定义:在无监督学习中,算法处理的是没有标记的数据,目标是发现数据中的模式、关联或结构。无监督学习算法在数据中寻找隐藏的模式或结构。

  • 常见任务:聚类、关联规则学习和降维等。

半监督学习:

  • 定义:介于监督学习和无监督学习之间,其中训练数据包含标记样本和未标记样本。算法尝试利用未标记的数据来提高学习效果,通常这种方法在标记数据稀缺或成本高昂时很有用。

强化学习:

  • 定义:涉及到一个智能体(agent)在与环境交互的过程中学习最佳行为或策略,以最大化累积奖励。强化学习不同于监督学习,因为它不直接告诉智能体应该做什么,而是让智能体自己探索。

另外还有迁移学习、在线学习、批处理学习、多任务学习、多模态学习、进化学习......

相关推荐
余俊晖19 分钟前
如何构造一个文档解析的多模态大模型?MinerU2.5架构、数据、训练方法
人工智能·文档解析
Akamai中国2 小时前
Linebreak赋能实时化企业转型:专业系统集成商携手Akamai以实时智能革新企业运营
人工智能·云计算·云服务
LiJieNiub3 小时前
读懂目标检测:从基础概念到主流算法
人工智能·计算机视觉·目标跟踪
weixin_519535773 小时前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
爱喝白开水a3 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void3 小时前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp
OpenCSG4 小时前
【活动预告】2025斗拱开发者大会,共探支付与AI未来
人工智能·ai·开源·大模型·支付安全
生命是有光的4 小时前
【深度学习】神经网络基础
人工智能·深度学习·神经网络
数字供应链安全产品选型4 小时前
国家级!悬镜安全入选两项“网络安全国家标准应用实践案例”
人工智能·安全·web安全
科技新知4 小时前
大厂AI各走“开源”路
人工智能·开源