language model

1、language model(LM):估计token序列的可能性

2、对于HMM,固定需要P(Y)才符合公式;对于LAS,加上P(Y)能够使效果更好

P(Y|X)需要成对的数据,而P(Y)不需要成对,所以可以得到很多数据

3、N-gram

(1)估计P(Y),收集大量的样本,将整个评估token序列概率分成许多小块的序列概率相乘

(2)例子:wreck a nice beach

(3)3-gram等就是,给两个词预测下一个的概率,以次类推N

(4)有一个问题就是,给的样本虽然说很大,但是不可能涵盖所有的语言,所以有些P即使在样本中没有找到P也不应该写为0,给一个小概率。

4、continuous LM使用到一个推荐机制(个人理解就像是找相同特征认为有可能具有同样的行为)

(1)图中数字是指在样本中出现的次数

(2)h_i和v_j是属于token的特征,并且是我们想训练的向量参数

(3)训练条件是

也就是希望向量v_i与向量h_j相乘可以得到非常近似nij,使用梯度下降进行训练。

(4)训练结果就是:

(5)将DL引入:

a、输入为所有的token的h作为的输入向量(如果要训练dog,就只将dog的部分设为1,其他为0)

b、中间的层就只是一个线性层

c、输出预计的词汇个数,与训练集中的数据做对比

d、也就是单纯把这个网络看作为神经网络

5、NN-based LM是想用于取代N-gram,因为在NN中可以将分成小块的概率计算出来

6、RNN-based LM:可以用于处理非常长的N-gram

7、LM跟今天的DL based 的end to end 的model结合起来(以LAS为例)

(1)结合方式

(2)浅融合:将LM和LAS的输出的distribution通过权重(可训练的)进行加和。

(3)深融合:在Hiddenlayer的地方就进行融合,这个融合的Network是需要训练的

a、但如果更换LM,需要重新训练network;对于不同的输入情况,可能需要不同的LM,所以下面改进。

b、将LM训练到softmax之前的,dimension跟tokensize相同的输出放到Network中,这样就可以更换LM了。

c、有一个好处是,即使LM是输出关于token的概率的model,也能适应这种训练方式。

d、但是上述会有一个问题,加入vocabularysize很大,使用word作为token,dimension太大了,就有些问题

(4)cold fusion:需要关注什么时候将LM加入

a、LM已经训练好了,LAS还没训练好,再将Network训练好,这样可以加快LAS的训练速度

b、是因为LM已经处理好文字和文字之间的关系了,就让LAS更加专注于文字和语音之间的关系

c、有问题就是,LM就真的不能更换了,因为LAS一出生就跟LM绑定在一起

相关推荐
java_heartLake40 分钟前
基于deepseek的AI知识库系统搭建
人工智能·deepseek
阿里云云原生2 小时前
山石网科×阿里云通义灵码,开启研发“AI智造”新时代
网络·人工智能·阿里云·ai程序员·ai程序员体验官
diemeng11193 小时前
AI前端开发技能变革时代:效率与创新的新范式
前端·人工智能
有Li3 小时前
跨中心模型自适应牙齿分割|文献速递-医学影像人工智能进展
人工智能
牧歌悠悠7 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
坚毅不拔的柠檬柠檬8 小时前
AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构
人工智能·chatgpt·文心一言
坚毅不拔的柠檬柠檬8 小时前
2025:人工智能重构人类文明的新纪元
人工智能·重构
jixunwulian8 小时前
DeepSeek赋能AI边缘计算网关,开启智能新时代!
人工智能·边缘计算
Archie_IT8 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理
大数据追光猿8 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法