SHAP值理论

一、优点

线性回归的系数越大并不意味着影响越强,shap是同一维度的;

XGBoost的对比是没有正负向;

ps:不会受到缺失值的影响

二、理论基础

博弈论:

ABC三人有每个人完成的效率 ,每两个人完成的效率(有交互作用),三个人一起完成something,应该怎么分配------加性的一种边际分配。

三、shap的应用

1、基础版------shap_values

复制代码
explainer = shap.Explainer(model)
shap_values = explainer(X)
#也可以shap_values = explainer.shap_values(X) ,X训练集

在SHAP中进行模型解释需要先创建一个explainer,SHAP支持很多类型的explainer

deep:用于计算深度学习模型,基于DeepLIFT算法,支持TensorFlow / Keras。

gradient:用于深度学习模型,综合了SHAP、集成梯度、和SmoothGrad等思想,形成单一期望值方程,但速度比DeepExplainer慢,并且做出了不同的假设。 此方法基于Integrated Gradient归因方法,并支持TensorFlow / Keras / PyTorch。

kernel:模型无关,适用于任何模型

linear:适用于特征独立不相关的线性模型

tree:适用于树模型和基于树模型的集成算法,如XGBoost,LightGBM或CatBoost

shap.SamplingExplainer --- SHAP latest documentation

复制代码
print("shap维度:",shap_values.shape)
print("测试集维度:",X_train.shape)
#the same

训练集or测试集的X都可以。

相关推荐
万岳科技程序员小金2 小时前
AI数字人小程序源码开发全流程实战:前端交互+后端算法部署指南
前端·人工智能·软件开发·ai数字人小程序·ai数字人系统源码·ai数字人软件开发·ai数字人平台搭建
励ℳ2 小时前
机器学习-LASSO算法指南
人工智能·算法·机器学习
小刘的大模型笔记2 小时前
大模型微调PPO原理——零基础吃透RLHF核心算法
人工智能
IT_Octopus2 小时前
AI 工程 生产级别向量数据库Milvus2.6.10性能测试报告
数据库·人工智能·milvus
rainbow7242442 小时前
主流AI证书全面对比
人工智能
Hcoco_me2 小时前
深度学习目标关联:常见深度学习匹配方法全面详解
人工智能·深度学习·分类·数据挖掘·自动驾驶
EF@蛐蛐堂2 小时前
【AI】openclaw 小龙虾料理全攻略
人工智能
美酒没故事°2 小时前
AI中的agent、skill、mcp都是什么?
人工智能·ai
后端小肥肠3 小时前
从n8n到Claude Skills:轻松搞定小红书热门美食手账,3分钟出图,小白也能会!
人工智能·aigc·agent
之歆3 小时前
Coze 照片知识库深度解析:当 AI 学会「看图说话」
人工智能