SHAP值理论

一、优点

线性回归的系数越大并不意味着影响越强,shap是同一维度的;

XGBoost的对比是没有正负向;

ps:不会受到缺失值的影响

二、理论基础

博弈论:

ABC三人有每个人完成的效率 ,每两个人完成的效率(有交互作用),三个人一起完成something,应该怎么分配------加性的一种边际分配。

三、shap的应用

1、基础版------shap_values

复制代码
explainer = shap.Explainer(model)
shap_values = explainer(X)
#也可以shap_values = explainer.shap_values(X) ,X训练集

在SHAP中进行模型解释需要先创建一个explainer,SHAP支持很多类型的explainer

deep:用于计算深度学习模型,基于DeepLIFT算法,支持TensorFlow / Keras。

gradient:用于深度学习模型,综合了SHAP、集成梯度、和SmoothGrad等思想,形成单一期望值方程,但速度比DeepExplainer慢,并且做出了不同的假设。 此方法基于Integrated Gradient归因方法,并支持TensorFlow / Keras / PyTorch。

kernel:模型无关,适用于任何模型

linear:适用于特征独立不相关的线性模型

tree:适用于树模型和基于树模型的集成算法,如XGBoost,LightGBM或CatBoost

shap.SamplingExplainer --- SHAP latest documentation

复制代码
print("shap维度:",shap_values.shape)
print("测试集维度:",X_train.shape)
#the same

训练集or测试集的X都可以。

相关推荐
阳艳讲ai3 分钟前
九尾狐AI智能矩阵:重构企业获客新引擎
大数据·人工智能
Liue612312313 分钟前
窗帘检测与识别_YOLOv26模型详解与应用_1
人工智能·yolo·目标跟踪
啊巴矲3 分钟前
小白从零开始勇闯人工智能:计算机视觉初级篇(OpenCV进阶操作(下))
人工智能·opencv·计算机视觉
玄同7655 分钟前
SQLAlchemy 会话管理终极指南:close、commit、refresh、rollback 的正确打开方式
数据库·人工智能·python·sql·postgresql·自然语言处理·知识图谱
萤丰信息8 分钟前
四大核心技术领航,智慧园区重构产业生态新范式
java·大数据·人工智能·智慧城市·智慧园区
言無咎8 分钟前
从人工失误到AI精准:财务机器人如何重构企业财务数据体系
人工智能·重构·机器人
H7998742429 分钟前
2026动态捕捉推荐:8款专业产品全方位测评
大数据·前端·人工智能
chatexcel11 分钟前
从Excel到AI,数据看板工具选型思路梳理
人工智能·信息可视化·excel
企业老板ai培训14 分钟前
从九尾狐AI案例解析智能矩阵的AI获客架构设计与实现
人工智能
小陈phd15 分钟前
langGraph从入门到精通(十一)——基于langgraph构建复杂工具应用的ReAct自治代理
前端·人工智能·react.js·自然语言处理