SHAP值理论

一、优点

线性回归的系数越大并不意味着影响越强,shap是同一维度的;

XGBoost的对比是没有正负向;

ps:不会受到缺失值的影响

二、理论基础

博弈论:

ABC三人有每个人完成的效率 ,每两个人完成的效率(有交互作用),三个人一起完成something,应该怎么分配------加性的一种边际分配。

三、shap的应用

1、基础版------shap_values

复制代码
explainer = shap.Explainer(model)
shap_values = explainer(X)
#也可以shap_values = explainer.shap_values(X) ,X训练集

在SHAP中进行模型解释需要先创建一个explainer,SHAP支持很多类型的explainer

deep:用于计算深度学习模型,基于DeepLIFT算法,支持TensorFlow / Keras。

gradient:用于深度学习模型,综合了SHAP、集成梯度、和SmoothGrad等思想,形成单一期望值方程,但速度比DeepExplainer慢,并且做出了不同的假设。 此方法基于Integrated Gradient归因方法,并支持TensorFlow / Keras / PyTorch。

kernel:模型无关,适用于任何模型

linear:适用于特征独立不相关的线性模型

tree:适用于树模型和基于树模型的集成算法,如XGBoost,LightGBM或CatBoost

shap.SamplingExplainer --- SHAP latest documentation

复制代码
print("shap维度:",shap_values.shape)
print("测试集维度:",X_train.shape)
#the same

训练集or测试集的X都可以。

相关推荐
数智联AI团队38 分钟前
2026丙午马年拜年全攻略:从传统习俗到AI智能解决方案,数智联科技助力企业新春营销一马当先
人工智能·科技
大模型任我行5 小时前
阿里:揭示RLVR训练不稳定性根源
人工智能·语言模型·自然语言处理·论文笔记
沃达德软件9 小时前
视频增强技术解析
人工智能·目标检测·机器学习·计算机视觉·超分辨率重建
魔乐社区9 小时前
GLM-5上线魔乐社区,基于昇腾的模型推理+训练部署教程请查收!
人工智能·开源·大模型
geneculture10 小时前
化繁为简且以简驭繁:唯文论英汉对照哲学术语49个主义/论
人工智能·融智学的重要应用·哲学与科学统一性·信息融智学·融智时代(杂志)
睡醒了叭10 小时前
coze-工作流-http请求
人工智能·aigc
twilight_46910 小时前
机器学习与模式识别——机器学习中的搜索算法
人工智能·python·机器学习
冰西瓜60011 小时前
深度学习的数学原理(十)—— 权重如何自发分工
人工智能·深度学习·计算机视觉
niuniudengdeng11 小时前
基于时序上下文编码的端到端无文本依赖语音分词模型
人工智能·数学·算法·概率论