SHAP值理论

一、优点

线性回归的系数越大并不意味着影响越强,shap是同一维度的;

XGBoost的对比是没有正负向;

ps:不会受到缺失值的影响

二、理论基础

博弈论:

ABC三人有每个人完成的效率 ,每两个人完成的效率(有交互作用),三个人一起完成something,应该怎么分配------加性的一种边际分配。

三、shap的应用

1、基础版------shap_values

复制代码
explainer = shap.Explainer(model)
shap_values = explainer(X)
#也可以shap_values = explainer.shap_values(X) ,X训练集

在SHAP中进行模型解释需要先创建一个explainer,SHAP支持很多类型的explainer

deep:用于计算深度学习模型,基于DeepLIFT算法,支持TensorFlow / Keras。

gradient:用于深度学习模型,综合了SHAP、集成梯度、和SmoothGrad等思想,形成单一期望值方程,但速度比DeepExplainer慢,并且做出了不同的假设。 此方法基于Integrated Gradient归因方法,并支持TensorFlow / Keras / PyTorch。

kernel:模型无关,适用于任何模型

linear:适用于特征独立不相关的线性模型

tree:适用于树模型和基于树模型的集成算法,如XGBoost,LightGBM或CatBoost

shap.SamplingExplainer --- SHAP latest documentation

复制代码
print("shap维度:",shap_values.shape)
print("测试集维度:",X_train.shape)
#the same

训练集or测试集的X都可以。

相关推荐
八零后琐话5 小时前
干货:Claude最新大招Cowork避坑!
人工智能
汗流浃背了吧,老弟!5 小时前
BPE 词表构建与编解码(英雄联盟-托儿索语料)
人工智能·深度学习
软件聚导航6 小时前
从 AI 画马到马年红包封面,我还做了一个小程序
人工智能·chatgpt
啊森要自信6 小时前
CANN ops-cv:AI 硬件端视觉算法推理训练的算子性能调优与实战应用详解
人工智能·算法·cann
要加油哦~6 小时前
AI | 实践教程 - ScreenCoder | 多agents前端代码生成
前端·javascript·人工智能
玄同7656 小时前
从 0 到 1:用 Python 开发 MCP 工具,让 AI 智能体拥有 “超能力”
开发语言·人工智能·python·agent·ai编程·mcp·trae
新缸中之脑6 小时前
用RedisVL构建长期记忆
人工智能
J_Xiong01176 小时前
【Agents篇】07:Agent 的行动模块——工具使用与具身执行
人工智能·ai agent
SEO_juper6 小时前
13个不容错过的SEO技巧,让您的网站可见度飙升
人工智能·seo·数字营销
小瑞瑞acd6 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习