SHAP值理论

一、优点

线性回归的系数越大并不意味着影响越强,shap是同一维度的;

XGBoost的对比是没有正负向;

ps:不会受到缺失值的影响

二、理论基础

博弈论:

ABC三人有每个人完成的效率 ,每两个人完成的效率(有交互作用),三个人一起完成something,应该怎么分配------加性的一种边际分配。

三、shap的应用

1、基础版------shap_values

复制代码
explainer = shap.Explainer(model)
shap_values = explainer(X)
#也可以shap_values = explainer.shap_values(X) ,X训练集

在SHAP中进行模型解释需要先创建一个explainer,SHAP支持很多类型的explainer

deep:用于计算深度学习模型,基于DeepLIFT算法,支持TensorFlow / Keras。

gradient:用于深度学习模型,综合了SHAP、集成梯度、和SmoothGrad等思想,形成单一期望值方程,但速度比DeepExplainer慢,并且做出了不同的假设。 此方法基于Integrated Gradient归因方法,并支持TensorFlow / Keras / PyTorch。

kernel:模型无关,适用于任何模型

linear:适用于特征独立不相关的线性模型

tree:适用于树模型和基于树模型的集成算法,如XGBoost,LightGBM或CatBoost

shap.SamplingExplainer --- SHAP latest documentation

复制代码
print("shap维度:",shap_values.shape)
print("测试集维度:",X_train.shape)
#the same

训练集or测试集的X都可以。

相关推荐
LaughingZhu7 小时前
Product Hunt 每日热榜 | 2026-02-14
数据库·人工智能·经验分享·神经网络·搜索引擎·chatgpt
大模型探员7 小时前
告别答非所问!深度解析文档切分如何决定RAG的搜索上限
人工智能
民乐团扒谱机7 小时前
【读论文】深度学习中的卷积算术指南 A guide to convolution arithmetic for deep learning
人工智能·深度学习·神经网络·机器学习·cnn·卷积神经网络·图像识别
byzh_rc7 小时前
[深度学习网络从入门到入土] 拓展 - Inception
网络·人工智能·深度学习
阿里巴巴淘系技术团队官网博客7 小时前
从应用架构的视角看退小宝AI助手落地现状
人工智能·架构
寻星探路8 小时前
【JVM 终极通关指南】万字长文从底层到实战全维度深度拆解 Java 虚拟机
java·开发语言·jvm·人工智能·python·算法·ai
Elastic 中国社区官方博客8 小时前
DevRel 通讯 — 2026 年 2 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·jina
一个天蝎座 白勺 程序猿8 小时前
飞算JavaAI:从情绪价值到代码革命,智能合并项目与定制化开发新范式
人工智能·ai·自动化·javaai
田里的水稻8 小时前
FA_融合和滤波(FF)-联邦滤波(FKF)
人工智能·算法·数学建模·机器人·自动驾驶
摘星编程8 小时前
解析CANN ops-transformer的FlashAttention算子:注意力机制的内存优化
人工智能·深度学习·transformer