0-1 背包问题及其 Java 实现


0-1 背包问题及其 Java 实现

概述

0-1 背包问题是动态规划领域的经典问题之一。在这个问题中,你给定一组物品,每个物品都有一个重量和一个价值,确定在不超过背包承载能力的前提下,如何选取物品以使得总价值最大化。

问题描述

假设有 n 个物品和一个容量为 W 的背包。第 i 个物品的重量为 weight[i],价值为 value[i]。0-1 背包问题的目标是选择一些物品放入背包中,以使得背包中物品的总价值最大,且总重量不超过背包的承载能力。

动态规划解法

我们可以使用动态规划来解决这个问题。基本思想是为每个物品 i(1 ≤ i ≤ n)和每个可能的背包容量 w(0 ≤ w ≤ W),计算在前 i 个物品中选择若干个放入容量为 w 的背包中可以获得的最大价值 dp[i][w]

状态转移方程

dp\[i\]\[w\] = \\max(dp\[i-1\]\[w\], dp\[i-1\]\[w-weight\[i\]\] + value\[i\])

  • 如果不选择第 i 个物品,dp[i][w] 就等于 dp[i-1][w]
  • 如果选择第 i 个物品,且其重量为 weight[i],那么 dp[i][w] 就等于 dp[i-1][w - weight[i]] + value[i]

Java 实现

以下是 0-1 背包问题的 Java 代码实现:

java 复制代码
public class Knapsack {
    public static void main(String[] args) {
        int[] weight = {10, 20, 30}; // 物品重量
        int[] value = {60, 100, 120}; // 物品价值
        int W = 50; // 背包容量
        int n = weight.length;

        int[][] dp = new int[n + 1][W + 1];

        for (int i = 1; i <= n; i++) {
            for (int w = 1; w <= W; w++) {
                if (weight[i - 1] <= w) {
                    dp[i][w] = Math.max(dp[i - 1][w], dp[i - 1][w - weight[i - 1]] + value[i - 1]);
                } else {
                    dp[i][w] = dp[i - 1][w];
                }
            }
        }

        System.out.println("最大价值为: " + dp[n][W]);
    }
}

代码解释

  1. 我们定义了两个数组 weightvalue 来存储物品的重量和价值。
  2. 背包的容量存储在变量 W 中。
  3. 创建一个二维数组 dp,其大小为 (n + 1) x (W + 1),用于存储动态规划的结果。
  4. 使用两层循环填充 dp 数组,外层循环遍历物品,内层循环遍历背包的所有可能容量。
  5. 根据状态转移方程计算 dp[i][w] 的值。
  6. 最终,dp[n][W] 存储了在不超过背包容量 W 的情况下,可以获得的最大价值。

结语

0-1 背包问题是理解动态规划思想的一个很好的例子。通过上述 Java 实现,我们可以有效地解决这个问题,并可以根据实际需求调整代码以适应不同的场景。


相关推荐
想回家的一天5 小时前
ECONNREFUSED ::1:8000 前端代理问题
开发语言
cike_y5 小时前
Mybatis之解析配置优化
java·开发语言·tomcat·mybatis·安全开发
Jay_Franklin6 小时前
SRIM通过python计算dap
开发语言·python
是一个Bug6 小时前
Java基础50道经典面试题(四)
java·windows·python
Slow菜鸟6 小时前
Java基础架构设计(三)| 通用响应与异常处理(分布式应用通用方案)
java·开发语言
消失的旧时光-19436 小时前
401 自动刷新 Token 的完整架构设计(Dio 实战版)
开发语言·前端·javascript
wadesir6 小时前
Rust中的条件变量详解(使用Condvar的wait方法实现线程同步)
开发语言·算法·rust
我是Superman丶7 小时前
《Spring WebFlux 实战:基于 SSE 实现多类型事件流(支持聊天消息、元数据与控制指令混合传输)》
java
tap.AI7 小时前
RAG系列(二)数据准备与向量索引
开发语言·人工智能
廋到被风吹走7 小时前
【Spring】常用注解分类整理
java·后端·spring