目录
1.定义模块
自定义Movilenet_v2类
class Mobilenet_v2(nn.Module): def __init__(self): super().__init__() model = models.mobilenet_v2(pretrained=True) self.layer=nn.Sequential( model.features, ) def forward(self, x): x=self.layer(x) x = nn.functional.adaptive_avg_pool2d(x, (1, 1)) return x
2.导入模块
3.task.py文件更改
添加到解析模块
elif m is Mobilenet_v2:
c2=args[0]
args=[]
4.更改yaml文件
# Ultralytics YOLO 🚀, AGPL-3.0 license # YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify # Parameters nc: 11 # number of classes scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n' # [depth, width, max_channels] n: [0.33, 0.25, 1024] s: [0.33, 0.50, 1024] m: [0.67, 0.75, 1024] l: [1.00, 1.00, 1024] x: [1.00, 1.25, 1024] # YOLOv8.0n backbone backbone: # [from, repeats, module, args] - [-1, 1, Mobilenet_v2, [1280]] # 0-P1/2 # YOLOv8.0n head head: - [-1, 1, Classify, [nc]] # Classify