【基础解读】神奇宝贝多分类——Classification:Probabilistic Generative Model

背景

问题定义

尝试用Regression的方法解决Classification

尝试用概率的方式解决Classification

求一个个体被选中并来自于某一类的概率------贝叶斯





进行Classification

结果分析

模型调整------共用convariance matrix

结果分析

总结




相关推荐
T1an-11 天前
力扣70.爬楼梯
算法·leetcode·职场和发展
T1an-11 天前
力扣169.多数元素
数据结构·算法·leetcode
ting_zh1 天前
PyTorch、TensorFlow、JAX 简介
人工智能·pytorch·tensorflow
java1234_小锋1 天前
TensorFlow2 Python深度学习 - 深度学习概述
python·深度学习·tensorflow·tensorflow2·python深度学习
数据与人工智能律师1 天前
AI的法治迷宫:技术层、模型层、应用层的法律痛点
大数据·网络·人工智能·云计算·区块链
椒颜皮皮虾྅1 天前
【DeploySharp 】基于DeploySharp 的深度学习模型部署测试平台:安装和使用流程
人工智能·深度学习·开源·c#·openvino
迈火1 天前
PuLID_ComfyUI:ComfyUI中的图像生成强化插件
开发语言·人工智能·python·深度学习·计算机视觉·stable diffusion·语音识别
AI新兵1 天前
AI大事记10:从对抗到创造——生成对抗网络 (GANs)
人工智能·神经网络·生成对抗网络
却道天凉_好个秋1 天前
深度学习(十五):Dropout
人工智能·深度学习·dropout
你好~每一天1 天前
2025 中小企业 AI 转型:核心岗技能 “怎么证、怎么用”?
人工智能·百度·数据挖掘·数据分析·职业·转行