CNN代码实战

CNN的原理

从 DNN 到 CNN

(1)卷积层与汇聚

⚫ 深度神经网络 DNN 中,相邻层的所有神经元之间都有连接,这叫全连接;卷积神经网络 CNN 中,新增了卷积层(Convolution)与汇聚(Pooling)。

⚫ DNN 的全连接层对应 CNN 的卷积层,汇聚是与激活函数类似的附件;单个卷积层的结构是:卷积层-激活函数-(汇聚),其中汇聚可省略。

(2)CNN:专攻多维数据

在深度神经网络 DNN 课程的最后一章,使用 DNN 进行了手写数字的识别。但是,图像至少就有二维,向全连接层输入时,需要多维数据拉平为 1 维数据,这样一来,图像的形状就被忽视了,很多特征是隐藏在空间属性里的,而卷积层可以保持输入数据的维数不变,当输入数据是二维图像时,卷积层会以多维数据的形式接收输入数据,并同样以多维数据的形式输出至下一层

导包

复制代码
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt

制作数据集

复制代码
# 制作数据集
# 数据集转换参数
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.MNIST(
root = 'D:/Postgraduate/CNN', # 下载路径
train = True, # 是 train 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
test_Data = datasets.MNIST(
root = 'D:/Postgraduate/CNN', # 下载路径
train = False, # 是 test 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
# 批次加载器
train_loader = DataLoader(train_Data, shuffle=True, batch_size=256)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=256)

训练网络

复制代码
class CNN(nn.Module):
    def __init__(self):
       super(CNN,self).__init__()
       self.net = nn.Sequential(
       nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),
       nn.AvgPool2d(kernel_size=2, stride=2),
       nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),
       nn.AvgPool2d(kernel_size=2, stride=2),
       nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),
       nn.Flatten(),
       nn.Linear(120, 84), nn.Tanh(),
       nn.Linear(84, 10)
)
    def forward(self, x):
         y = self.net(x)
         return y
# 创建子类的实例,并搬到 GPU 上
model = CNN().to('cuda:0')
# 训练网络
# 损失函数的选择
loss_fn = nn.CrossEntropyLoss() # 自带 softmax 激活函数
# 优化算法的选择
learning_rate = 0.9 # 设置学习率
optimizer = torch.optim.SGD(
    model.parameters(),
    lr = learning_rate,
)
# 训练网络
epochs = 5
losses = [] # 记录损失函数变化的列表
for epoch in range(epochs):
    for (x, y) in train_loader: # 获取小批次的 x 与 y
        x, y = x.to('cuda:0'), y.to('cuda:0')
        Pred = model(x) # 一次前向传播(小批量)
        loss = loss_fn(Pred, y) # 计算损失函数
        losses.append(loss.item()) # 记录损失函数的变化
        optimizer.zero_grad() # 清理上一轮滞留的梯度
        loss.backward() # 一次反向传播
        optimizer.step() # 优化内部参数
Fig = plt.figure()
plt.plot(range(len(losses)), losses)
plt.show()

测试网络

复制代码
# 测试网络
correct = 0
total = 0
with torch.no_grad(): # 该局部关闭梯度计算功能
    for (x, y) in test_loader: # 获取小批次的 x 与 y
        x, y = x.to('cuda:0'), y.to('cuda:0')
        Pred = model(x) # 一次前向传播(小批量)
        _, predicted = torch.max(Pred.data, dim=1)
        correct += torch.sum( (predicted == y) )
        total += y.size(0)
print(f'测试集精准度: {100*correct/total} %')

使用网络

复制代码
# 保存网络
torch.save(model, 'CNN.path')
new_model = torch.load('CNN.path')

完整代码

复制代码
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt

# 制作数据集
# 数据集转换参数
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.MNIST(
root = 'D:/Postgraduate/python_project/CNN', # 下载路径
train = True, # 是 train 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
test_Data = datasets.MNIST(
root = 'D:/Postgraduate/python_project/CNN', # 下载路径
train = False, # 是 test 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
# 批次加载器
train_loader = DataLoader(train_Data, shuffle=True, batch_size=256)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=256)


class CNN(nn.Module):
    def __init__(self):
       super(CNN,self).__init__()
       self.net = nn.Sequential(
       nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),
       nn.AvgPool2d(kernel_size=2, stride=2),
       nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),
       nn.AvgPool2d(kernel_size=2, stride=2),
       nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),
       nn.Flatten(),
       nn.Linear(120, 84), nn.Tanh(),
       nn.Linear(84, 10)
)
    def forward(self, x):
         y = self.net(x)
         return y
# 创建子类的实例,并搬到 GPU 上
model = CNN().to('cuda:0')
# 训练网络
# 损失函数的选择
loss_fn = nn.CrossEntropyLoss() # 自带 softmax 激活函数
# 优化算法的选择
learning_rate = 0.9 # 设置学习率
optimizer = torch.optim.SGD(
    model.parameters(),
    lr = learning_rate,
)
# 训练网络
epochs = 5
losses = [] # 记录损失函数变化的列表
for epoch in range(epochs):
    for (x, y) in train_loader: # 获取小批次的 x 与 y
        x, y = x.to('cuda:0'), y.to('cuda:0')
        Pred = model(x) # 一次前向传播(小批量)
        loss = loss_fn(Pred, y) # 计算损失函数
        losses.append(loss.item()) # 记录损失函数的变化
        optimizer.zero_grad() # 清理上一轮滞留的梯度
        loss.backward() # 一次反向传播
        optimizer.step() # 优化内部参数
Fig = plt.figure()
plt.plot(range(len(losses)), losses)
plt.show()

# 测试网络
correct = 0
total = 0
with torch.no_grad(): # 该局部关闭梯度计算功能
    for (x, y) in test_loader: # 获取小批次的 x 与 y
        x, y = x.to('cuda:0'), y.to('cuda:0')
        Pred = model(x) # 一次前向传播(小批量)
        _, predicted = torch.max(Pred.data, dim=1)
        correct += torch.sum( (predicted == y) )
        total += y.size(0)
print(f'测试集精准度: {100*correct/total} %')

# 保存网络
torch.save(model, 'CNN.path')
new_model = torch.load('CNN.path')

运行截图

相关推荐
Start_Present43 分钟前
Pytorch 第十三回:神经网络编码器——自动编解码器
pytorch·python·深度学习·神经网络
Y1nhl2 小时前
搜广推校招面经六十四
人工智能·深度学习·leetcode·广告算法·推荐算法·搜索算法
Y1nhl3 小时前
Pyspark学习一:概述
数据库·人工智能·深度学习·学习·spark·pyspark·大数据技术
简简单单做算法5 小时前
基于mediapipe深度学习和限定半径最近邻分类树算法的人体摔倒检测系统python源码
人工智能·python·深度学习·算法·分类·mediapipe·限定半径最近邻分类树
就决定是你啦!6 小时前
机器学习 第一章 绪论
人工智能·深度学习·机器学习
liruiqiang0510 小时前
循环神经网络 - 简单循环网络
人工智能·rnn·深度学习·神经网络·机器学习
鸿蒙布道师11 小时前
OpenAI战略转向:开源推理模型背后的行业博弈与技术趋势
人工智能·深度学习·神经网络·opencv·自然语言处理·openai·deepseek
小白的高手之路11 小时前
torch.nn.Conv2d介绍——Pytorch中的二维卷积层
人工智能·pytorch·python·深度学习·神经网络·机器学习·cnn
船长@Quant11 小时前
PyTorch量化进阶教程:第五章 Transformer 在量化交易中的应用
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lab
liruiqiang0512 小时前
循环神经网络 - 通用近似定理 & 图灵完备
人工智能·rnn·深度学习·神经网络·机器学习