CNN代码实战

CNN的原理

从 DNN 到 CNN

(1)卷积层与汇聚

⚫ 深度神经网络 DNN 中,相邻层的所有神经元之间都有连接,这叫全连接;卷积神经网络 CNN 中,新增了卷积层(Convolution)与汇聚(Pooling)。

⚫ DNN 的全连接层对应 CNN 的卷积层,汇聚是与激活函数类似的附件;单个卷积层的结构是:卷积层-激活函数-(汇聚),其中汇聚可省略。

(2)CNN:专攻多维数据

在深度神经网络 DNN 课程的最后一章,使用 DNN 进行了手写数字的识别。但是,图像至少就有二维,向全连接层输入时,需要多维数据拉平为 1 维数据,这样一来,图像的形状就被忽视了,很多特征是隐藏在空间属性里的,而卷积层可以保持输入数据的维数不变,当输入数据是二维图像时,卷积层会以多维数据的形式接收输入数据,并同样以多维数据的形式输出至下一层

导包

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt

制作数据集

# 制作数据集
# 数据集转换参数
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.MNIST(
root = 'D:/Postgraduate/CNN', # 下载路径
train = True, # 是 train 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
test_Data = datasets.MNIST(
root = 'D:/Postgraduate/CNN', # 下载路径
train = False, # 是 test 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
# 批次加载器
train_loader = DataLoader(train_Data, shuffle=True, batch_size=256)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=256)

训练网络

class CNN(nn.Module):
    def __init__(self):
       super(CNN,self).__init__()
       self.net = nn.Sequential(
       nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),
       nn.AvgPool2d(kernel_size=2, stride=2),
       nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),
       nn.AvgPool2d(kernel_size=2, stride=2),
       nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),
       nn.Flatten(),
       nn.Linear(120, 84), nn.Tanh(),
       nn.Linear(84, 10)
)
    def forward(self, x):
         y = self.net(x)
         return y
# 创建子类的实例,并搬到 GPU 上
model = CNN().to('cuda:0')
# 训练网络
# 损失函数的选择
loss_fn = nn.CrossEntropyLoss() # 自带 softmax 激活函数
# 优化算法的选择
learning_rate = 0.9 # 设置学习率
optimizer = torch.optim.SGD(
    model.parameters(),
    lr = learning_rate,
)
# 训练网络
epochs = 5
losses = [] # 记录损失函数变化的列表
for epoch in range(epochs):
    for (x, y) in train_loader: # 获取小批次的 x 与 y
        x, y = x.to('cuda:0'), y.to('cuda:0')
        Pred = model(x) # 一次前向传播(小批量)
        loss = loss_fn(Pred, y) # 计算损失函数
        losses.append(loss.item()) # 记录损失函数的变化
        optimizer.zero_grad() # 清理上一轮滞留的梯度
        loss.backward() # 一次反向传播
        optimizer.step() # 优化内部参数
Fig = plt.figure()
plt.plot(range(len(losses)), losses)
plt.show()

测试网络

# 测试网络
correct = 0
total = 0
with torch.no_grad(): # 该局部关闭梯度计算功能
    for (x, y) in test_loader: # 获取小批次的 x 与 y
        x, y = x.to('cuda:0'), y.to('cuda:0')
        Pred = model(x) # 一次前向传播(小批量)
        _, predicted = torch.max(Pred.data, dim=1)
        correct += torch.sum( (predicted == y) )
        total += y.size(0)
print(f'测试集精准度: {100*correct/total} %')

使用网络

# 保存网络
torch.save(model, 'CNN.path')
new_model = torch.load('CNN.path')

完整代码

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt

# 制作数据集
# 数据集转换参数
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.MNIST(
root = 'D:/Postgraduate/python_project/CNN', # 下载路径
train = True, # 是 train 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
test_Data = datasets.MNIST(
root = 'D:/Postgraduate/python_project/CNN', # 下载路径
train = False, # 是 test 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
# 批次加载器
train_loader = DataLoader(train_Data, shuffle=True, batch_size=256)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=256)


class CNN(nn.Module):
    def __init__(self):
       super(CNN,self).__init__()
       self.net = nn.Sequential(
       nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),
       nn.AvgPool2d(kernel_size=2, stride=2),
       nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),
       nn.AvgPool2d(kernel_size=2, stride=2),
       nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),
       nn.Flatten(),
       nn.Linear(120, 84), nn.Tanh(),
       nn.Linear(84, 10)
)
    def forward(self, x):
         y = self.net(x)
         return y
# 创建子类的实例,并搬到 GPU 上
model = CNN().to('cuda:0')
# 训练网络
# 损失函数的选择
loss_fn = nn.CrossEntropyLoss() # 自带 softmax 激活函数
# 优化算法的选择
learning_rate = 0.9 # 设置学习率
optimizer = torch.optim.SGD(
    model.parameters(),
    lr = learning_rate,
)
# 训练网络
epochs = 5
losses = [] # 记录损失函数变化的列表
for epoch in range(epochs):
    for (x, y) in train_loader: # 获取小批次的 x 与 y
        x, y = x.to('cuda:0'), y.to('cuda:0')
        Pred = model(x) # 一次前向传播(小批量)
        loss = loss_fn(Pred, y) # 计算损失函数
        losses.append(loss.item()) # 记录损失函数的变化
        optimizer.zero_grad() # 清理上一轮滞留的梯度
        loss.backward() # 一次反向传播
        optimizer.step() # 优化内部参数
Fig = plt.figure()
plt.plot(range(len(losses)), losses)
plt.show()

# 测试网络
correct = 0
total = 0
with torch.no_grad(): # 该局部关闭梯度计算功能
    for (x, y) in test_loader: # 获取小批次的 x 与 y
        x, y = x.to('cuda:0'), y.to('cuda:0')
        Pred = model(x) # 一次前向传播(小批量)
        _, predicted = torch.max(Pred.data, dim=1)
        correct += torch.sum( (predicted == y) )
        total += y.size(0)
print(f'测试集精准度: {100*correct/total} %')

# 保存网络
torch.save(model, 'CNN.path')
new_model = torch.load('CNN.path')

运行截图

相关推荐
paixiaoxin2 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
weixin_515202492 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
吕小明么4 小时前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi
CSBLOG4 小时前
深度学习试题及答案解析(一)
人工智能·深度学习
小陈phd5 小时前
深度学习之超分辨率算法——SRCNN
python·深度学习·tensorflow·卷积
王国强20096 小时前
动手学人工智能-深度学习计算5-文件读写操作
深度学习
威化饼的一隅7 小时前
【多模态】swift-3框架使用
人工智能·深度学习·大模型·swift·多模态
机器学习之心7 小时前
BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)
深度学习·分类·gru
MorleyOlsen8 小时前
【Trick】解决服务器cuda报错——RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
运维·服务器·深度学习
愚者大大11 小时前
1. 深度学习介绍
人工智能·深度学习