牛客竞赛数据结构专题班树状数组、线段树练习题

牛客竞赛_ACM/NOI/CSP/CCPC/ICPC算法编程高难度练习赛_牛客竞赛OJ

G 智乃酱的平方数列(线段树,等差数列,多项式)

题目描述

想必你一定会用线段树维护等差数列吧?让我们来看看它的升级版。

请你维护一个长度为5×10 ^5的数组,一开始数组中每个元素都为0,要求支持以下两个操作:

1、区间[l,r]加自然数的平方数组,即al+=1,al+1+=4,al+2+=9,al+3+=16...ar+=(r−l+1)∗(r−l+1)

2、区间[l,r]查询区间和mod 10^9 + 7

输入描述:

第一行输入n,m,(1≤n,m≤5*10 ^5)

接下来m行,对于每行,先读入一个整数q。

当q的值为1时,还需读入两个整l,r,(1≤l≤r≤n)表示需要对区间[l,r]进行操作,让第一个元素加1,第二个元素加4,第三个元素加9...以此类推。

当q的值为2时,还需读入两个整数l,r(1≤l≤r≤n)表示查询l到r的元素和

输出描述:

对于每一个q=2,输出一行一个非负整数,表示l到r的区间和mod 110^9+7。

示例1

输入

复制

4 4

2 1 4

1 1 4

1 3 4

2 1 4

输出

复制

0

35

示例2

输入

复制

10 6

1 1 6

1 8 9

1 3 6

2 1 10

1 1 10

2 1 10

输出

复制

126

511

解析:

等差数列可以写成 [x-(l-1)]^2,其中 x 表示当前的位置,等价于 x^2-2*x*(l-1)+(l-1)^2,通过线段树维护其系数即可

cpp 复制代码
#include <iostream>
#include <string>
#include <cstring>
#include <cmath>
#include <ctime>
#include <algorithm>
#include <utility>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <math.h>
#include <map>
#include <sstream>
#include <deque>
#include <unordered_map>
#include <unordered_set>
#include <bitset>
#include <stdio.h>
#include <tuple>
using namespace std;
/*
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
*/
typedef long long LL;
#define int long long
#define ld long double
//#define INT __int128
const LL INF = 0x3f3f3f3f3f3f3f3f;
typedef unsigned long long ULL;
typedef pair<long long, long long> PLL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int inf = 0x3f3f3f3f;
const LL mod = 1e9+7;
const ld eps = 1e-12;
const int N = 5e5 + 10, M = N + 10;
int n, m;
struct TREE {
	int l, r;
	int la1, la2, la3;
	int sum;
	int base1, base2;
}tr[N << 2];
#define ls u<<1
#define rs u<<1|1
void cal(int u, int la1, int la2, int la3) {
	la3 %= mod;
	int len = tr[u].r - tr[u].l + 1;
	tr[u].sum = (tr[u].sum + len * la3 % mod) % mod;
	tr[u].sum = (tr[u].sum - 2 * tr[u].base2 * la2 % mod + mod) % mod;
	tr[u].sum = (tr[u].sum + tr[u].base1 * la1 % mod) % mod;
	tr[u].la1 = (tr[u].la1 + la1) % mod;
	tr[u].la2 = (tr[u].la2 + la2) % mod;
	tr[u].la3 = (tr[u].la3 + la3) % mod;
}
void up(int u) {
	tr[u].sum = (tr[ls].sum + tr[rs].sum) % mod;
}
void down(int u) {
	if (tr[u].la1||tr[u].la2||tr[u].la3) {
		cal(ls, tr[u].la1, tr[u].la2, tr[u].la3);
		cal(rs, tr[u].la1, tr[u].la2, tr[u].la3);
		tr[u].la1 = tr[u].la2 = tr[u].la3 = 0;
	}
}
void build(int u, int l, int r) {
	tr[u].l = l, tr[u].r = r;
	if (l == r) {
		tr[u].base1 = (l * l) % mod , tr[u].base2 = l;
		return;
	}
	int mid = (l + r) >> 1;
	build(ls, l, mid), build(rs, mid + 1, r);
	tr[u].base1 = (tr[ls].base1 + tr[rs].base1) % mod;
	tr[u].base2 = (tr[ls].base2 + tr[rs].base2) % mod;
}
void modify(int u, int l, int r, int d) {
	if (l <= tr[u].l && tr[u].r <= r) {
		cal(u, 1, d, d * d);
		return;
	}
	down(u);
	int mid = (tr[u].l + tr[u].r) >> 1;
	if (l <= mid)modify(ls, l, r, d);
	if (r > mid)modify(rs, l, r, d);
	up(u);
}
int query(int u, int l, int r) {
	if (l <= tr[u].l && tr[u].r <= r) {
		return tr[u].sum;
	}
	down(u);
	int ret = 0;
	int mid = (tr[u].l + tr[u].r) >> 1;
	if (l <= mid)ret = (ret + query(ls, l, r)) % mod;
	if (r > mid)ret = (ret + query(rs, l, r)) % mod;
	//up(u);
	return ret;
}
signed main() {
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	cout.tie(nullptr);
	cin >> n >> m;
	build(1, 1, n);
	int op, l, r;
	while (m--) {
		cin >> op >> l >> r;
		if (op == 1) {
			modify(1, l, r, l - 1);
		}
		else {
			cout << query(1, l, r) << endl;
		}
	}
	return 0;
}
/*
4 5
2 1 4
1 1 4
2 1 4
1 3 4
2 1 4
4 5
2 1 4
1 3 4
2 1 4
1 1 4
2 1 4
*/

K 智乃酱的双塔问题·改(线段树,dp,矩阵连乘)

解析:

不能发现这个问题如果不带修改则可以用 dp+前缀和(矩阵乘法)解决,带修改则可以用线段树维护区间和。

令 f[i][0/1] 表示从第 1 层的左边(0)或右边(1)到第 i 层的左边(0)或右边(1)的方案数

我们可以将每一层的转移状态用矩阵表示,

cpp 复制代码
#include <iostream>
#include <string>
#include <cstring>
#include <cmath>
#include <ctime>
#include <algorithm>
#include <utility>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <math.h>
#include <map>
#include <sstream>
#include <deque>
#include <unordered_map>
#include <unordered_set>
#include <bitset>
#include <stdio.h>
#include <tuple>
using namespace std;
/*
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
*/
typedef long long LL;
//#define int long long
#define ld long double
//#define INT __int128
const LL INF = 0x3f3f3f3f3f3f3f3f;
typedef unsigned long long ULL;
typedef pair<long long, long long> PLL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int inf = 0x3f3f3f3f;
const LL mod = 1e9 + 7;
const ld eps = 1e-12;
const int N = 2e5 + 10, M = N + 10;
int n, m;
char s[N];
struct MATRIX {
	LL a[2][2];
	void init(int b1,int b2,int b3,int b4) {
		a[0][0] = b1, a[0][1] = b2;
		a[1][0] = b3, a[1][1] = b4;
	}
	MATRIX operator*(MATRIX oth) {
		MATRIX ret;
		ret.init(0, 0, 0, 0);
		for (int i = 0; i < 2; i++) {
			for (int j = 0; j < 2; j++) {
				for (int k = 0; k < 2; k++) {
					(ret.a[i][j] += a[i][k] * oth.a[k][j] % mod) %= mod;
				}
			}
		}
		return ret;
	}
};

struct TREE {
	int l, r;
	MATRIX ma;
}tr[N << 2];
#define ls u<<1
#define rs u<<1|1
void up(int u) {
	tr[u].ma = tr[ls].ma * tr[rs].ma;
}
void build(int u, int l, int r) {
	tr[u].l = l, tr[u].r = r;
	if (l == r) {
		tr[u].ma.init(1, s[l] == '/', s[l] != '/', 1);
		return;
	}
	int mid = l + r >> 1;
	build(ls, l, mid), build(rs, mid + 1, r);
	up(u);
}
void modify(int u, int pos, char ch) {
	if (tr[u].l == tr[u].r) {
		tr[u].ma.init(1, ch == '/', ch != '/', 1);
		return;
	}
	int mid = tr[u].l + tr[u].r >> 1;
	if (pos <= mid)modify(ls, pos, ch);
	if (pos > mid)modify(rs, pos, ch);
	up(u);
}
MATRIX query(int u, int l, int r) {
	if (l <= tr[u].l && tr[u].r <= r) {
		return tr[u].ma;
	}
	int mid = tr[u].l + tr[u].r >> 1;
	MATRIX ret;
	ret.init(1, 0, 0, 1);
	if (l <= mid)ret = (ret * query(ls, l, r));
	if (r > mid)ret = (ret * query(rs, l, r));
	return ret;
}
signed main() {
	cin >> n >> m;
	scanf("%s", s + 1);
	build(1, 1, n - 1);
	int op, ht, hs, h;
	for (int i = 1; i <= m; i++) {
		scanf("%d", &op);
		if (op == 0) {
			char c[2];
			scanf("%d%s",&h, c);
			modify(1, h,c[0]);
		}
		else {
			int ps, pt;
			scanf("%d%d%d%d",&hs,&ht, &ps, &pt);
			auto ret = query(1, hs, ht - 1);
			/*cout << "__________________" << endl;
			for (int i = 0; i < 2; i++) {
				cout << ret.a[i][0] << " " << ret.a[i][1] << endl;
			}
			cout << endl;*/
			LL ans = ret.a[ps][pt];
			printf("%lld\n", ans);
		}
	}
	return 0;
}

J 智乃酱的双塔问题·极(带修改的DP,DDP)

这题思路与上题一样,只不过将矩阵的乘法运算换成 floyd 算法,矩阵的含义变为图的邻接矩阵。(可以变的主要原因是因为 floyd 算法的运算形式与矩阵连乘的形式很相似)

cpp 复制代码
#include <iostream>
#include <string>
#include <cstring>
#include <cmath>
#include <ctime>
#include <algorithm>
#include <utility>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <math.h>
#include <map>
#include <sstream>
#include <deque>
#include <unordered_map>
#include <unordered_set>
#include <bitset>
#include <stdio.h>
#include <tuple>
using namespace std;
/*
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
*/
typedef long long LL;
//#define int long long
#define ld long double
//#define INT __int128
const LL INF = 0x3f3f3f3f3f3f3f3f;
typedef unsigned long long ULL;
typedef pair<long long, long long> PLL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int inf = 0x3f3f3f3f;
const LL mod = 1e9 + 7;
const ld eps = 1e-12;
const int N = 1e5 + 10, M = N + 10;
int n, m;
int val[N][3];
char s[N];
#define inf INF
struct MATRIX {
	LL a[2][2];
	void init(LL b1, LL b2, LL b3, LL b4) {
		a[0][0] = b1, a[0][1] = b2;
		a[1][0] = b3, a[1][1] = b4;
	}
	MATRIX operator*(MATRIX oth) {
		MATRIX ret;
		ret.init(inf, inf, inf, inf);
		for (int i = 0; i < 2; i++) {
			for (int j = 0; j < 2; j++) {
				for (int k = 0; k < 2; k++) {
					//(ret.a[i][j] += a[i][k] * oth.a[k][j] % mod) %= mod;
					if (a[i][k] == inf || oth.a[k][j] == inf)continue;
					ret.a[i][j] = min(ret.a[i][j], (a[i][k] + oth.a[k][j]));
				}
			}
		}
		return ret;
	}
};

struct TREE {
	int l, r;
	MATRIX ma;
}tr[N << 2];
#define ls u<<1
#define rs u<<1|1
void up(int u) {
	tr[u].ma = tr[ls].ma * tr[rs].ma;
}
void build(int u, int l, int r) {
	tr[u].l = l, tr[u].r = r;
	if (l == r) {
		if (s[l] == '/')
			tr[u].ma.init(val[l][0], val[l][2], inf, val[l][1]);
		else tr[u].ma.init(val[l][0], inf, val[l][2], val[l][1]);
		return;
	}
	int mid = l + r >> 1;
	build(ls, l, mid), build(rs, mid + 1, r);
	up(u);
}
void modify(int u, int pos, char ch, int val1, int val2, int val3) {
	if (tr[u].l == tr[u].r) {
		if (ch == '/')
			tr[u].ma.init(val1, val3, inf, val2);
		else tr[u].ma.init(val1, inf, val3, val2);
		return;
	}
	int mid = tr[u].l + tr[u].r >> 1;
	if (pos <= mid)modify(ls, pos, ch, val1, val2, val3);
	if (pos > mid)modify(rs, pos, ch, val1, val2, val3);
	up(u);
}
MATRIX query(int u, int l, int r) {
	if (l <= tr[u].l && tr[u].r <= r) {
		return tr[u].ma;
	}
	int mid = tr[u].l + tr[u].r >> 1;
	MATRIX ret;
	ret.init(0, inf, inf, 0);
	if (l <= mid)ret = ret * query(ls, l, r);
	if (r > mid)ret = ret * query(rs, l, r);
	return ret;
}
signed main() {
	cin >> n >> m;
	scanf("%s", s + 1);
	for (int i = 1; i < n; i++) {
		scanf("%d%d%d", &val[i][0], &val[i][1], &val[i][2]);
	}
	build(1, 1, n - 1);
	int op, ht, hs, h;
	for (int i = 1; i <= m; i++) {
		scanf("%d", &op);
		if (op == 0) {
			char c[2];
			scanf("%d%s", &h, c);
			//cout << "______" << c[0] << endl;
			s[h] = c[0];
			modify(1, h, c[0], val[h][0], val[h][1], val[h][2]);
		}
		else if (op == 1) {
			int val1, val2, val3;
			scanf("%d%d%d%d", &h, &val1, &val2, &val3);
			val[h][0] = val1, val[h][1] = val2, val[h][2] = val3;
			modify(1, h, s[h], val1, val2, val3);
		}
		else {
			int ps, pt;
			scanf("%d%d%d%d", &hs, &ht, &ps, &pt);
			auto ret = query(1, hs, ht - 1);
			/*cout << "__________________" << endl;
			for (int i = 0; i < 2; i++) {
				cout << ret.a[i][0] << " " << ret.a[i][1] << endl;
			}
			cout << endl;*/
			LL ans = ret.a[ps][pt];
			if (ans == inf) {
				printf("-1\n");
			}
			else
				printf("%lld\n", ans);
		}
	}
	return 0;
}

/*
4 13
///
1 2 1
2 3 5
8 8 1
2 1 4 1 0
2 1 2 1 0
2 2 3 1 0
2 3 4 1 0
0 3 \
2 1 4 0 0
2 2 4 0 0
2 2 4 0 1
2 3 4 0 1
2 3 4 1 0
1 1 1 1 1
1 2 1 1 1
1 3 1 1 1
2 1 4 1 0
0 3 /
2 1 4 1 0


4 13
///
1 2 1
2 3 5
8 8 1
2 1 4 1 0
0 3 \
2 1 4 0 0
2 2 4 0 0
2 2 4 0 1
2 3 4 0 1
2 3 4 1 0
1 1 1 1 1
1 2 1 1 1
1 3 1 1 1
2 1 4 1 0
0 3 /
2 1 4 1 0
*/
相关推荐
tinker在coding25 分钟前
Coding Caprice - Linked-List 1
算法·leetcode
XH华5 小时前
初识C语言之二维数组(下)
c语言·算法
南宫生5 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
不想当程序猿_5 小时前
【蓝桥杯每日一题】求和——前缀和
算法·前缀和·蓝桥杯
落魄君子6 小时前
GA-BP分类-遗传算法(Genetic Algorithm)和反向传播算法(Backpropagation)
算法·分类·数据挖掘
菜鸡中的奋斗鸡→挣扎鸡6 小时前
滑动窗口 + 算法复习
数据结构·算法
Lenyiin6 小时前
第146场双周赛:统计符合条件长度为3的子数组数目、统计异或值为给定值的路径数目、判断网格图能否被切割成块、唯一中间众数子序列 Ⅰ
c++·算法·leetcode·周赛·lenyiin
郭wes代码6 小时前
Cmd命令大全(万字详细版)
python·算法·小程序
scan7246 小时前
LILAC采样算法
人工智能·算法·机器学习
菌菌的快乐生活7 小时前
理解支持向量机
算法·机器学习·支持向量机