四十一、【人工智能】【机器学习】- Bayesian Logistic Regression算法模型

系列文章目录

第一章 【机器学习】初识机器学习

第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression)

第三章 【机器学习】【监督学习】- 支持向量机 (SVM)

第四章【机器学习】【监督学习】- K-近邻算法 (K-NN)

第五章【机器学习】【监督学习】- 决策树 (Decision Trees)

第六章【机器学习】【监督学习】- 梯度提升机 (Gradient Boosting Machine, GBM)

第七章 【机器学习】【监督学习】-神经网络 (Neural Networks)

第八章【机器学习】【监督学习】-卷积神经网络 (CNN)

第九章【机器学习】【监督学习】-循环神经网络 (RNN)

第十章【机器学习】【监督学习】-线性回归

第十一章【机器学习】【监督学习】-局部加权线性回归 (Locally Weighted Linear Regression, LWLR)

第十二章【机器学习】【监督学习】- 岭回归 (Ridge Regression)

十三、【机器学习】【监督学习】- Lasso回归 (Least Absolute Shrinkage and Selection Operator)

十四、【机器学习】【监督学习】- 弹性网回归 (Elastic Net Regression)

十五、【机器学习】【监督学习】- 神经网络回归

十六、【机器学习】【监督学习】- 支持向量回归 (SVR)

十七、【机器学习】【非监督学习】- K-均值 (K-Means)

十八、【机器学习】【非监督学习】- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)十九、【机器学习】【非监督学习】- 层次聚类 (Hierarchical Clustering)二十、【机器学习】【非监督学习】- 均值漂移 (Mean Shift)

二十一、【机器学习】【非监督学习】- 谱聚类 (Spectral Clustering)​​


目录

系列文章目录

一、基本定义

(一)、监督学习

(二)、监督学习的基本流程

(三)、监督学习分类算法(Classification)

[二、 Bayesian Logistic Regression](#二、 Bayesian Logistic Regression)

(一)、定义

(二)、基本概念

(三)、训练过程

(四)、特点

(五)、适用场景

(六)、扩展

三、总结

四、相关书籍介绍

内容概览

适用读者


一、基本定义

(一)、监督学习

监督学习(Supervised Learning)是机器学习中的一种主要方法,其核心思想是通过已知的输入-输出对(即带有标签的数据集)来训练模型,从而使模型能够泛化到未见的新数据上,做出正确的预测或分类。在监督学习过程中,算法"学习"的依据是这些已标记的例子,目标是找到输入特征与预期输出之间的映射关系。

(二)、监督学习的基本流程

数据收集:获取包含输入特征和对应正确输出标签的训练数据集。

数据预处理:清洗数据,处理缺失值,特征选择与转换,标准化或归一化数据等,以便于模型学习。

模型选择:选择合适的算法,如决策树、支持向量机、神经网络等。

训练:使用训练数据集调整模型参数,最小化预测输出与实际标签之间的差距(损失函数)。

验证与调优:使用验证集评估模型性能,调整超参数以优化模型。

测试:最后使用独立的测试集评估模型的泛化能力,确保模型不仅在训练数据上表现良好,也能在未见过的新数据上做出准确预测。

(三)、监督学习分类算法(Classification)

定义:分类任务的目标是学习一个模型,该模型能够将输入数据分配到预定义的几个类别中的一个。这是一个监督学习问题,需要有一组已经标记好类别的训练数据,模型会根据这些数据学习如何区分不同类别。

例子:垃圾邮件检测(垃圾邮件 vs. 非垃圾邮件)、图像识别(猫 vs. 狗)。


二、 Bayesian Logistic Regression

(一)、定义

Bayesian Logistic Regression是一种统计建模方法,它结合了Logistic回归的原理和贝叶斯统计的框架。这种方法不仅估计模型参数,还通过参数的后验分布来量化不确定性,为预测提供了一个概率性的解释。

(二)、基本概念

  1. Logistic回归模型:Logistic回归是一种用于分类问题的统计模型,特别是用于预测二元响应变量(如成功/失败、患病/健康等)的概率。模型的形式为:

    其中​ 是线性预测变量,是响应变量为1(成功)的条件概率。

  2. 先验分布:在观察任何数据之前,对模型参数的先验信念。先验分布反映了对参数值的先验知识或假设。

  3. 似然函数:给定参数的情况下,数据出现的概率。在Logistic回归中,似然函数通常基于伯努利分布,因为响应变量是二元的。

  4. 后验分布:在考虑了先验知识和观测数据后,模型参数的概率分布。后验分布是Bayesian Logistic Regression的核心,它综合了先验知识和数据信息。

  5. 边际似然:也称为证据,是数据的概率,不考虑参数。在实际应用中,边际似然常被用作模型比较的标准。

(三)、训练过程

  1. 指定先验分布:为模型参数选择合适的先验分布,这可能基于领域知识或选择无信息先验(如均匀分布)。

  2. 构建似然函数:基于观测数据和模型,构造似然函数,反映数据在给定参数下的概率。

  3. 计算后验分布:通过将先验分布与似然函数相乘,并进行归一化处理,来计算后验分布。在复杂模型中,后验分布通常不能解析求解,因此需要使用采样方法,如马尔科夫链蒙特卡洛(MCMC)。

  4. 参数估计:从后验分布中抽取样本,可以得到参数的点估计(如均值或中位数),以及置信区间。

  5. 模型评估:使用后验预测分布来评估模型的预测能力和不确定性。

(四)、特点

  • 不确定性量化:Bayesian Logistic Regression不仅提供参数估计,还提供了参数的分布,这有助于量化预测的不确定性。
  • 先验知识整合:允许在模型中整合专家意见或先前研究结果。
  • 灵活性:可以处理复杂的先验分布和模型结构,适合于具有高维度和复杂相互作用的模型。

(五)、适用场景

  • 医疗诊断:预测疾病发生概率,考虑到患者的各种特征和历史记录。
  • 市场调研:预测消费者购买行为,考虑到个人属性和社会经济因素。
  • 风险管理:评估贷款违约概率,考虑到借款人的信用历史和其他财务指标。

(六)、扩展

  • Hierarchical Models:允许参数在不同层次上共享,适用于具有群体结构的数据,如个体嵌套在群组中。
  • Non-conjugate Priors:虽然共轭先验可以使计算变得简单,但非共轭先验可以提供更灵活的先验分布形状。
  • Approximate Inference:当后验分布难以精确计算时,可以使用变分贝叶斯等近似推断方法。

三、总结

Bayesian Logistic Regression通过将贝叶斯统计的框架应用于Logistic回归,为处理分类问题提供了一种强大的、灵活的和全面的方法,尤其是在需要考虑参数不确定性的情景下。

四、相关书籍介绍

《Python机器学习算法》这本书是由赵志勇编写,由电子工业出版社出版的一本关于机器学习的入门书籍,出版时间为2017年7月。该书的特点是结合理论与实践,旨在帮助读者不仅理解机器学习算法的理论基础,而且能够动手实践,最终熟练掌握算法的应用。以下是本书的主要内容和适用读者群体的总结:

内容概览

本书分为六个主要部分:

  1. 基本概念:介绍监督学习、无监督学习和深度学习的基本概念。
  2. 分类算法:包括Logistic回归、Softmax Regression、Factorization Machine、支持向量机(SVM)、随机森林和BP神经网络等。
  3. 回归算法:涵盖线性回归、岭回归和CART树回归。
  4. 聚类算法:如K-Means、Mean Shift、DBSCAN和Label Propagation算法。
  5. 推荐算法:基于协同过滤、矩阵分解和基于图的推荐算法。
  6. 深度学习:介绍AutoEncoder和卷积神经网络(CNN)。

此外,本书还特别安排了一章来讲解算法在具体项目中的实践案例,以及附录部分介绍了Python语言、numpy库和TensorFlow框架的使用方法。

适用读者

这本书适合以下几类读者:

  • 机器学习初学者:书中从算法原理出发,逐步深入,适合没有机器学习背景的读者入门。
  • 具有一定项目经验的读者:书中不仅有理论介绍,还有大量实践代码,可以帮助已有一定经验的读者深化理解,提升技能。
  • 对推荐系统、广告算法和深度学习感兴趣的读者:书中详细介绍了这些领域的实用算法,有助于读者在这些方向上进行深入研究。

总之,《Python机器学习算法》是一本全面介绍机器学习算法的书籍,它兼顾理论与实践,无论是对初学者还是有一定经验的读者,都能从中找到适合自己的内容。

书籍下载链接:

链接:https://pan.baidu.com/s/1ngX9yoC1HMZ2ORmHvSEtlA?pwd=0qbm

提取码:0qbm

相关推荐
Yuleave19 分钟前
高效流式大语言模型(StreamingLLM)——基于“注意力汇聚点”的突破性研究
人工智能·语言模型·自然语言处理
cqbzcsq22 分钟前
ESMC-600M蛋白质语言模型本地部署攻略
人工智能·语言模型·自然语言处理
墨️穹26 分钟前
DAY5, 使用read 和 write 实现链表保存到文件,以及从文件加载数据到链表中的功能
算法
Erik_LinX29 分钟前
day1-->day7| 机器学习(吴恩达)学习笔记
笔记·学习·机器学习
sz66cm38 分钟前
算法基础 -- Trie压缩树原理
算法
Java与Android技术栈1 小时前
图像编辑器 Monica 之 CV 常见算法的快速调参
算法
别NULL1 小时前
机试题——最小矩阵宽度
c++·算法·矩阵
珊瑚里的鱼1 小时前
【单链表算法实战】解锁数据结构核心谜题——环形链表
数据结构·学习·程序人生·算法·leetcode·链表·visual studio
无限码力1 小时前
[矩阵扩散]
数据结构·算法·华为od·笔试真题·华为od e卷真题
gentle_ice1 小时前
leetcode——矩阵置零(java)
java·算法·leetcode·矩阵