LangGPT结构化提示词

LangGPT是Language For GPT-like LLMs的简称,中文名为结构化提示词,LangGPT是一个帮助你编写高质量提示词的工具,理论基础是我们提出的一套模块化、标准化的提斯提编写方法论------结构化提示词。我们希望揭开提示工程的神秘面纱,为大众提供一套可操作、可复现的提示词方法论、工具和交流社群。我们的愿景是让人人都能写出高质量提示词。LangGPT社区文档:https://langgpt.ai

LangGPT结构

LangGPT框架参考了面对对象程序设计的思想,设计为基于角色的双层结构,一个完整的提示词包含模块-内部元素两级,模块表示要求或提示LLM的方面,例如:背景信息、建议、约束等。内部元素为模块的组成部分,是归属一方面的具体要求或辅助信息,分为辅助型和方法型。

编写技巧

①构建全局思维链

对大模型的Prompt应用CoT思维链方法的有效性是被研究和实践广泛证明了的。首先可以根据场景选择基本的模块。

一个好的结构化Prompt模板,某种意义上是构建一个好的全局四文联。如LangGPT中展示的模块设计时就考虑了如下思维链:

Role (角色) -> Profile(角色简介)---> Profile 下的 skill (角色技能) -> Rules (角色要遵守的规则) -> Workflow (满足上述条件的角色的工作流程) -> Initialization (进行正式开始工作的初始化准备) -> 开始实际使用

一个好的Prompt,内容结构上最好也是逻辑清晰连贯的。结构化prompt方法将久经考验的逻辑思维连融入了结构中,大大降低了思维链路的构建难度。

构建 Prompt 时,不妨参考优质模板的全局思维链路,熟练掌握后,完全可以对其进行增删改留调整得到一个适合自己使用的模板。例如当你需要控制输出格式,尤其是需要格式化输出时,完全可以增加 Ouput 或者 OutputFormat 这样的模块。

②保持上下文语义一致性

包含两个方面,一个是格式语义一致性 ,一个是内容语义一致性

格式语义一致性是指标识符的标识功能前后一致。 最好不要混用,比如 # 既用于标识标题,又用于标识变量这种行为就造成了前后不一致,这会对模型识别 Prompt 的层级结构造成干扰。

内容语义一致性是指思维链路上的属性词语义合适。 例如 LangGPT 中的 Profile 属性词,使之功能更加明确:即角色的简历。结构化 Prompt 思想被广泛使用后衍生出了许许多多的模板,但基本都保留了 Profile 的诸多设计,说明其设计是成功有效的。

内容语义一致性还包括属性词和相应模块内容的语义一致。 例如 Rules 部分是角色需要遵守规则,则不宜将角色技能、描述大量堆砌在此。

③有机结合其他 Prompt 技巧

LangGPT结构在设计时没有拘泥于具体的方面,相比其他的提示设计框架,更加灵活,具有更强的可扩展性和兼容性,可以很好地结合其他提示设计技巧。

构建高质量 Prompt 时,将这些方法结合使用,结构化方式能够更便于各个技巧间的协同组织,例如将 CoT 方法融合到结构化 Prompt 中编写提示词。 汇总现有的一些方法:

上面这些方法最好结合使用,以实现在复杂任务中实现使用不可靠工具(LLMs)构建可靠系统的目标。

  1. 细节法:给出更清晰的指令,包含更多具体的细节
  2. 分解法:将复杂的任务分解为更简单的子任务 (Let's think step by step, CoT,LangChain等思想)
  3. 记忆法:构建指令使模型时刻记住任务,确保不偏离任务解决路径(system 级 prompt)
  4. 解释法:让模型在回答之前进行解释,说明理由 (CoT 等方法)
  5. 投票法:让模型给出多个结果,然后使用模型选择最佳结果 (ToT 等方法)
  6. 示例法:提供一个或多个具体例子,提供输入输出示例 (one-shot, few-shot 等方法)
相关推荐
bug404_4 小时前
分布式大语言模型服务引擎vLLM论文解读
人工智能·分布式·语言模型
Zhouqi_Hua8 小时前
LLM论文笔记 12: Teaching Arithmetic to Small Transformers
论文阅读·人工智能·深度学习·神经网络·语言模型
一 铭9 小时前
dify实现分析-rag-关键词索引的实现
人工智能·语言模型·大模型·llm
没枕头我咋睡觉12 小时前
【大语言模型_2】mindie部署deepseek模型
人工智能·语言模型·自然语言处理
仙人掌_lz12 小时前
【再读】2501.12948/DeepSeek-R1通过强化学习提升大型语言模型(LLMs)的推理能力
人工智能·语言模型·自然语言处理
tangjunjun-owen12 小时前
LLaVA-CoT: Let Vision Language Models Reason Step-by-Step论文解读
人工智能·语言模型·自然语言处理·llava-cot论文
FserSuN14 小时前
大语言模型Agent
人工智能·语言模型·自然语言处理
奔跑的蜗牛啊啊15 小时前
linux部署olloma deespeek
nlp
真上帝的左手15 小时前
23. AI-大语言模型-DeepSeek赋能开发-Spring AI集成
spring boot·ai·语言模型·自然语言处理·ai编程
云边有个稻草人16 小时前
DeepSeek与ChatGPT:会取代搜索引擎和人工客服的人工智能革命
人工智能·搜索引擎·chatgpt·deepseek