LangGPT结构化提示词

LangGPT是Language For GPT-like LLMs的简称,中文名为结构化提示词,LangGPT是一个帮助你编写高质量提示词的工具,理论基础是我们提出的一套模块化、标准化的提斯提编写方法论------结构化提示词。我们希望揭开提示工程的神秘面纱,为大众提供一套可操作、可复现的提示词方法论、工具和交流社群。我们的愿景是让人人都能写出高质量提示词。LangGPT社区文档:https://langgpt.ai

LangGPT结构

LangGPT框架参考了面对对象程序设计的思想,设计为基于角色的双层结构,一个完整的提示词包含模块-内部元素两级,模块表示要求或提示LLM的方面,例如:背景信息、建议、约束等。内部元素为模块的组成部分,是归属一方面的具体要求或辅助信息,分为辅助型和方法型。

编写技巧

①构建全局思维链

对大模型的Prompt应用CoT思维链方法的有效性是被研究和实践广泛证明了的。首先可以根据场景选择基本的模块。

一个好的结构化Prompt模板,某种意义上是构建一个好的全局四文联。如LangGPT中展示的模块设计时就考虑了如下思维链:

Role (角色) -> Profile(角色简介)---> Profile 下的 skill (角色技能) -> Rules (角色要遵守的规则) -> Workflow (满足上述条件的角色的工作流程) -> Initialization (进行正式开始工作的初始化准备) -> 开始实际使用

一个好的Prompt,内容结构上最好也是逻辑清晰连贯的。结构化prompt方法将久经考验的逻辑思维连融入了结构中,大大降低了思维链路的构建难度。

构建 Prompt 时,不妨参考优质模板的全局思维链路,熟练掌握后,完全可以对其进行增删改留调整得到一个适合自己使用的模板。例如当你需要控制输出格式,尤其是需要格式化输出时,完全可以增加 Ouput 或者 OutputFormat 这样的模块。

②保持上下文语义一致性

包含两个方面,一个是格式语义一致性 ,一个是内容语义一致性

格式语义一致性是指标识符的标识功能前后一致。 最好不要混用,比如 # 既用于标识标题,又用于标识变量这种行为就造成了前后不一致,这会对模型识别 Prompt 的层级结构造成干扰。

内容语义一致性是指思维链路上的属性词语义合适。 例如 LangGPT 中的 Profile 属性词,使之功能更加明确:即角色的简历。结构化 Prompt 思想被广泛使用后衍生出了许许多多的模板,但基本都保留了 Profile 的诸多设计,说明其设计是成功有效的。

内容语义一致性还包括属性词和相应模块内容的语义一致。 例如 Rules 部分是角色需要遵守规则,则不宜将角色技能、描述大量堆砌在此。

③有机结合其他 Prompt 技巧

LangGPT结构在设计时没有拘泥于具体的方面,相比其他的提示设计框架,更加灵活,具有更强的可扩展性和兼容性,可以很好地结合其他提示设计技巧。

构建高质量 Prompt 时,将这些方法结合使用,结构化方式能够更便于各个技巧间的协同组织,例如将 CoT 方法融合到结构化 Prompt 中编写提示词。 汇总现有的一些方法:

上面这些方法最好结合使用,以实现在复杂任务中实现使用不可靠工具(LLMs)构建可靠系统的目标。

  1. 细节法:给出更清晰的指令,包含更多具体的细节
  2. 分解法:将复杂的任务分解为更简单的子任务 (Let's think step by step, CoT,LangChain等思想)
  3. 记忆法:构建指令使模型时刻记住任务,确保不偏离任务解决路径(system 级 prompt)
  4. 解释法:让模型在回答之前进行解释,说明理由 (CoT 等方法)
  5. 投票法:让模型给出多个结果,然后使用模型选择最佳结果 (ToT 等方法)
  6. 示例法:提供一个或多个具体例子,提供输入输出示例 (one-shot, few-shot 等方法)
相关推荐
小马过河R1 小时前
通俗理解CLIP模型如何实现图搜图乃至文搜图
人工智能·深度学习·机器学习·语言模型·nlp
that's boy13 小时前
Google 发布 Sec-Gemini v1:用 AI 重塑网络安全防御格局?
人工智能·安全·web安全·chatgpt·midjourney·ai编程·ai写作
Elastic 中国社区官方博客13 小时前
Elasticsearch 向量数据库,原生支持 Google Cloud Vertex AI 平台
大数据·数据库·人工智能·elasticsearch·搜索引擎·语言模型·自然语言处理
技术程序猿华锋1 天前
Zotero PDF Translate 翻译插件使用OpenAI API配置教程
人工智能·chatgpt·机器翻译
田辛 | 田豆芽1 天前
【人工智能】大语言模型多义词解析技术揭秘——以“项目“歧义消解为例
人工智能·语言模型·自然语言处理
Jamence1 天前
多模态大语言模型arxiv论文略读(十一)
人工智能·语言模型·自然语言处理
小白学C++.1 天前
大模型论文:CRAMMING TRAINING A LANGUAGE MODEL ON ASINGLE GPU IN ONE DAY(效率提升)-final
人工智能·语言模型·自然语言处理
量子位1 天前
ChatGPT 有了完整记忆!像朋友一样记住所有聊天记录,回复更加私人订制
人工智能·chatgpt
Lonwayne1 天前
为什么ChatGPT选择SSE而非WebSocket?
websocket·网络协议·chatgpt·程序那些事