深入理解Elasticsearch中的嵌套对象

Elasticsearch(简称ES)是一个基于Lucene的搜索引擎,它提供了全文搜索功能,而且也支持结构化数据的存储和查询。在ES中,嵌套对象(nested object)是一种特殊的数据结构,允许我们将多个文档存储在单个父文档中。这在处理具有复杂关系的数据时非常有用,例如订单和其包含的商品。

案例介绍

在这个案例中,我们将创建一个名为order-nested的索引,用于存储订单信息。每个订单包含一个或多个商品,这些商品以嵌套对象的形式存储在订单文档中。

创建索引和映射

首先,我们需要定义索引的映射,以指定每个字段的数据类型。特别是goods字段,我们将使用nested类型来定义它。

json 复制代码
PUT order-nested
{
  "mappings": {
    "properties": {
      "orderid": {
        "type": "integer"
      },
      "buyer": {
        "type": "keyword"
      },
      "order_time": {
        "type": "date",
        "format": "yyyy-MM-dd HH:mm:ss"
      },
      "goods": {
        "type": "nested",
        "properties": {
          "goodsid": {
            "type": "integer"
          },
          "goods_name": {
            "type": "keyword"
          },
          "price": {
            "type": "double"
          },
          "produce_time": {
            "type": "date",
            "format": "yyyy-MM-dd HH:mm:ss"
          }
        }
      }
    }
  }
}

添加文档

接下来,我们添加一个订单文档,包含两个商品。

json 复制代码
PUT order-nested/_doc/1
{
  "orderid": "1",
  "buyer": "tom",
  "order_time": "2020-11-04 00:00:00",
  "goods": [
    {
      "goodsid": "1",
      "goods_name": "milk",
      "price": 5.2,
      "produce_time": "2020-10-04 00:00:00"
    },
    {
      "goodsid": "2",
      "goods_name": "juice",
      "price": 8.2,
      "produce_time": "2020-10-12 00:00:00"
    }
  ]
}

更新文档

我们可以使用更新API来向订单中添加更多的商品。

json 复制代码
POST order-nested/_update/1
{
  "doc": {
    "goods": [
      {
        "goodsid": "3",
        "goods_name": "apple",
        "price": 18.2,
        "produce_time": "2020-10-05 00:00:00"
      }
    ]
  }
}

搜索和查询

使用嵌套查询,我们可以针对嵌套对象进行搜索。例如,我们可以找到所有包含特定商品名称和生产日期的订单。

json 复制代码
POST order-nested/_search
{
  "query": {
    "nested": {
      "path": "goods",
      "query": {
        "bool": {
          "must": [
            {
              "match": {
                "goods.goods_name": "juice"
              }
            },
            {
              "match": {
                "goods.produce_time": "2020-10-04 00:00:00"
              }
            }
          ]
        }
      }
    }
  }
}

我们还可以在搜索结果中高亮显示匹配的嵌套字段。

json 复制代码
POST order-nested/_search
{
  "query": {
    "nested": {
      "path": "goods",
      "query": {
        "bool": {
          "must": [
            {
              "match": {
                "goods.goods_name": "milk"
              }
            }
          ]
        }
      },
      "inner_hits": {
        "highlight": {
          "fields": {
            "*": {}
          }
        }
      }
    }
  }
}

排序和聚合

除了搜索,我们还可以对嵌套对象进行排序和聚合。例如,我们可以按照商品价格降序排序所有订单。

json 复制代码
POST order-nested/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "goods.price": {
        "order": "desc",
        "nested": {
          "path": "goods"
        },
        "mode": "sum"
      }
    }
  ]
}

或者,我们可以对商品名称进行聚合,以查看哪些商品名称最常见。

json 复制代码
POST order-nested/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "nest_agg": {
      "nested": {
        "path": "goods"
      },
      "aggs": {
        "items": {
          "terms": {
            "field": "goods.goods_name"
          }
        }
      }
    }
  }
}

结论

通过这个案例,我们可以看到Elasticsearch的嵌套对象功能如何帮助我们以一种非常灵活和强大的方式来处理和查询复杂的数据结构。嵌套对象不仅使得数据模型更加丰富,而且提供了强大的查询能力,使得我们可以轻松地执行复杂的搜索、排序和聚合操作。

相关推荐
mazhafener1237 小时前
智慧照明:集中控制器、单双灯控制器与智慧灯杆网关的高效协同
大数据
打码人的日常分享7 小时前
物联网智慧医院建设方案(PPT)
大数据·物联网·架构·流程图·智慧城市·制造
Lansonli8 小时前
大数据Spark(六十一):Spark基于Standalone提交任务流程
大数据·分布式·spark
Rverdoser9 小时前
电脑硬盘分几个区好
大数据
傻啦嘿哟9 小时前
Python 数据分析与可视化实战:从数据清洗到图表呈现
大数据·数据库·人工智能
Theodore_102210 小时前
大数据(2) 大数据处理架构Hadoop
大数据·服务器·hadoop·分布式·ubuntu·架构
簌簌曌10 小时前
CentOS7 + JDK8 虚拟机安装与 Hadoop + Spark 集群搭建实践
大数据·hadoop·spark
冒泡的肥皂11 小时前
强大的ANTLR4语法解析器入门demo
后端·搜索引擎·编程语言
Theodore_102212 小时前
大数据(1) 大数据概述
大数据·hadoop·数据分析·spark·hbase
Aurora_NeAr12 小时前
Apache Spark详解
大数据·后端·spark