深度学习基础—RMSprop算法与Adam 优化算法

1.RMSprop算法

1.1.算法流程

除了动量梯度下降法,RMSprop算法也可以加快梯度下降,这个算法的算法流程如下:深度学习基础---动量梯度下降法http://t.csdnimg.cn/zeGRo

1.2.算法原理

和动量梯度下降不同的是,对dW和db的变成了平方项,同时权重更新变为了(dW/sqrt(SdW))和(db/sqrt(Sdb)),这样做的原因如下:

如上图,损失函数是关于参数W和b的函数,因此简化为x轴表示W的优化方向,y轴表示b的优化方向。同动量梯度下降,我们希望减少y轴方向的摆动,加快x轴方向的优化,因此有SdW和Sdb。观察微分的方向,可以发现:摆动幅度过大,因此损失函数的斜率在b方向上的分量更多,也就是db更大,相反dW更小。于是SdW更小,Sdb更大。为了让W的变化幅度更大(加速x轴),b的变化幅度更小(减小y轴摆动),因此为W更新公式的dW除以一个较小的数,即sqrt(SdW),b更新公式的db除以更大的数,即sqrt(Sdb),达到削减大梯度的方向的梯度,增加小梯度方向的梯度,从而减小摆动,进而可以选择较大的学习率,加快模型的收敛。

注意:为了防止分母为0的风险,可以给分母+ℇ,即sqrt(SdW)+ℇ,ℇ通常取10^(-8),同理sqrt(Sdb)也是。

2.Adam 优化算法

Adam 优化算法是RMSprop算法和动量梯度下降法的结合版,该算法性能优秀,已被证明能适用多种不同结构的神经网络。该算法的算法流程如下:

本算法有很多超参数:学习率a,动量梯度下降法参数b1,RMSprop算法参数b2,ℇ。对于这些参数,默认b1=0.9,b2=0.999,ℇ=10^(-8)。一般不需要变动,但是学习率需要多次调试找到合适值。

相关推荐
卡奥斯开源社区官方17 小时前
NVIDIA Blackwell架构深度解析:2080亿晶体管如何重构AI算力规则?
人工智能·重构·架构
百锦再18 小时前
第11章 泛型、trait与生命周期
android·网络·人工智能·python·golang·rust·go
数新网络20 小时前
The Life of a Read/Write Query for Apache Iceberg Tables
人工智能·apache·知识图谱
Yangy_Jiaojiao21 小时前
开源视觉-语言-动作(VLA)机器人项目全景图(截至 2025 年)
人工智能·机器人
gorgeous(๑>؂<๑)21 小时前
【ICLR26匿名投稿】OneTrackerV2:统一多模态目标跟踪的“通才”模型
人工智能·机器学习·计算机视觉·目标跟踪
坠星不坠21 小时前
pycharm如何导入ai大语言模型的api-key
人工智能·语言模型·自然语言处理
周杰伦_Jay21 小时前
【智能体(Agent)技术深度解析】从架构到实现细节,核心是实现“感知环境→处理信息→决策行动→影响环境”的闭环
人工智能·机器学习·微服务·架构·golang·数据挖掘
王哈哈^_^1 天前
【完整源码+数据集】课堂行为数据集,yolo课堂行为检测数据集 2090 张,学生课堂行为识别数据集,目标检测课堂行为识别系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
Elastic 中国社区官方博客1 天前
Observability:适用于 PHP 的 OpenTelemetry:EDOT PHP 加入 OpenTelemetry 项目
大数据·开发语言·人工智能·elasticsearch·搜索引擎·全文检索·php
ytttr8731 天前
Landweber迭代算法用于一维、二维图像重建
人工智能·算法·机器学习