深度学习基础—RMSprop算法与Adam 优化算法

1.RMSprop算法

1.1.算法流程

除了动量梯度下降法,RMSprop算法也可以加快梯度下降,这个算法的算法流程如下:深度学习基础---动量梯度下降法http://t.csdnimg.cn/zeGRo

1.2.算法原理

和动量梯度下降不同的是,对dW和db的变成了平方项,同时权重更新变为了(dW/sqrt(SdW))和(db/sqrt(Sdb)),这样做的原因如下:

如上图,损失函数是关于参数W和b的函数,因此简化为x轴表示W的优化方向,y轴表示b的优化方向。同动量梯度下降,我们希望减少y轴方向的摆动,加快x轴方向的优化,因此有SdW和Sdb。观察微分的方向,可以发现:摆动幅度过大,因此损失函数的斜率在b方向上的分量更多,也就是db更大,相反dW更小。于是SdW更小,Sdb更大。为了让W的变化幅度更大(加速x轴),b的变化幅度更小(减小y轴摆动),因此为W更新公式的dW除以一个较小的数,即sqrt(SdW),b更新公式的db除以更大的数,即sqrt(Sdb),达到削减大梯度的方向的梯度,增加小梯度方向的梯度,从而减小摆动,进而可以选择较大的学习率,加快模型的收敛。

注意:为了防止分母为0的风险,可以给分母+ℇ,即sqrt(SdW)+ℇ,ℇ通常取10^(-8),同理sqrt(Sdb)也是。

2.Adam 优化算法

Adam 优化算法是RMSprop算法和动量梯度下降法的结合版,该算法性能优秀,已被证明能适用多种不同结构的神经网络。该算法的算法流程如下:

本算法有很多超参数:学习率a,动量梯度下降法参数b1,RMSprop算法参数b2,ℇ。对于这些参数,默认b1=0.9,b2=0.999,ℇ=10^(-8)。一般不需要变动,但是学习率需要多次调试找到合适值。

相关推荐
WJSKad12352 分钟前
【深度学习】向日葵目标检测模型优化_1
深度学习·目标检测·目标跟踪
CJenny18 分钟前
Claude Code常用操作和使用方法
人工智能·python
2501_9413331021 分钟前
铁路轨道部件识别与分类_YOLO13与BAMConv改进模型实现_1
人工智能·分类·数据挖掘
九河云22 分钟前
纺织印染“数字色差仪”:光谱+AI模型一次调色成功省染料12%
大数据·人工智能·安全·机器学习·数字化转型
星火开发设计31 分钟前
二维数组:矩阵存储与多维数组的内存布局
开发语言·c++·人工智能·算法·矩阵·函数·知识
2501_9110676632 分钟前
光能赋能,步步生 “电”!叁仟智慧路灯杆 + 太阳能地砖,解锁智慧城市新范式
人工智能·智慧城市
Yuer20251 小时前
评审一致、结构严谨、挑不出毛病”≠“工程上真正可用(更不等于优秀)
人工智能·edca os·可控ai
奔袭的算法工程师1 小时前
CRN源码详细解析(2)-- 图像骨干网络之Resnet18
网络·人工智能·深度学习·目标检测·自动驾驶
虹科网络安全1 小时前
艾体宝方案|人工智能如何重塑威胁检测与身份安全
人工智能·安全
事橙19991 小时前
KITTI数据集国内下载链接
人工智能·python·yolo