深度学习基础—RMSprop算法与Adam 优化算法

1.RMSprop算法

1.1.算法流程

除了动量梯度下降法,RMSprop算法也可以加快梯度下降,这个算法的算法流程如下:深度学习基础---动量梯度下降法http://t.csdnimg.cn/zeGRo

1.2.算法原理

和动量梯度下降不同的是,对dW和db的变成了平方项,同时权重更新变为了(dW/sqrt(SdW))和(db/sqrt(Sdb)),这样做的原因如下:

如上图,损失函数是关于参数W和b的函数,因此简化为x轴表示W的优化方向,y轴表示b的优化方向。同动量梯度下降,我们希望减少y轴方向的摆动,加快x轴方向的优化,因此有SdW和Sdb。观察微分的方向,可以发现:摆动幅度过大,因此损失函数的斜率在b方向上的分量更多,也就是db更大,相反dW更小。于是SdW更小,Sdb更大。为了让W的变化幅度更大(加速x轴),b的变化幅度更小(减小y轴摆动),因此为W更新公式的dW除以一个较小的数,即sqrt(SdW),b更新公式的db除以更大的数,即sqrt(Sdb),达到削减大梯度的方向的梯度,增加小梯度方向的梯度,从而减小摆动,进而可以选择较大的学习率,加快模型的收敛。

注意:为了防止分母为0的风险,可以给分母+ℇ,即sqrt(SdW)+ℇ,ℇ通常取10^(-8),同理sqrt(Sdb)也是。

2.Adam 优化算法

Adam 优化算法是RMSprop算法和动量梯度下降法的结合版,该算法性能优秀,已被证明能适用多种不同结构的神经网络。该算法的算法流程如下:

本算法有很多超参数:学习率a,动量梯度下降法参数b1,RMSprop算法参数b2,ℇ。对于这些参数,默认b1=0.9,b2=0.999,ℇ=10^(-8)。一般不需要变动,但是学习率需要多次调试找到合适值。

相关推荐
sali-tec6 小时前
C# 基于halcon的视觉工作流-章66 四目匹配
开发语言·人工智能·数码相机·算法·计算机视觉·c#
这张生成的图像能检测吗6 小时前
(论文速读)ParaDiffusion:基于信息扩散模型的段落到图像生成
人工智能·机器学习·计算机视觉·文生图·图像生成·视觉语言模型
新程记6 小时前
2025年,上海CAIE认证报考指南:把握AI机遇的实用起点
人工智能·百度
unicrom_深圳市由你创科技6 小时前
汽修AI智能体V1.0——从模型微调到应用部署
人工智能
路边草随风6 小时前
milvus向量数据库使用尝试
人工智能·python·milvus
irizhao6 小时前
基于深度学习的智能停车场系统设计与实现
人工智能·深度学习
九河云8 小时前
华为云 ECS 弹性伸缩技术:应对业务峰值的算力动态调度策略
大数据·服务器·人工智能·物联网·华为云
IT空门:门主8 小时前
Spring AI的教程,持续更新......
java·人工智能·spring·spring ai
美狐美颜SDK开放平台8 小时前
美颜sdk是什么?如何将美颜SDK接入安卓/iOS直播平台?
人工智能·美颜sdk·直播美颜sdk·美颜api·美狐美颜sdk
AI营销资讯站8 小时前
AI营销内容生产:哪些平台支持全球多语言内容同步生产?
大数据·人工智能