深度学习基础—RMSprop算法与Adam 优化算法

1.RMSprop算法

1.1.算法流程

除了动量梯度下降法,RMSprop算法也可以加快梯度下降,这个算法的算法流程如下:深度学习基础---动量梯度下降法http://t.csdnimg.cn/zeGRo

1.2.算法原理

和动量梯度下降不同的是,对dW和db的变成了平方项,同时权重更新变为了(dW/sqrt(SdW))和(db/sqrt(Sdb)),这样做的原因如下:

如上图,损失函数是关于参数W和b的函数,因此简化为x轴表示W的优化方向,y轴表示b的优化方向。同动量梯度下降,我们希望减少y轴方向的摆动,加快x轴方向的优化,因此有SdW和Sdb。观察微分的方向,可以发现:摆动幅度过大,因此损失函数的斜率在b方向上的分量更多,也就是db更大,相反dW更小。于是SdW更小,Sdb更大。为了让W的变化幅度更大(加速x轴),b的变化幅度更小(减小y轴摆动),因此为W更新公式的dW除以一个较小的数,即sqrt(SdW),b更新公式的db除以更大的数,即sqrt(Sdb),达到削减大梯度的方向的梯度,增加小梯度方向的梯度,从而减小摆动,进而可以选择较大的学习率,加快模型的收敛。

注意:为了防止分母为0的风险,可以给分母+ℇ,即sqrt(SdW)+ℇ,ℇ通常取10^(-8),同理sqrt(Sdb)也是。

2.Adam 优化算法

Adam 优化算法是RMSprop算法和动量梯度下降法的结合版,该算法性能优秀,已被证明能适用多种不同结构的神经网络。该算法的算法流程如下:

本算法有很多超参数:学习率a,动量梯度下降法参数b1,RMSprop算法参数b2,ℇ。对于这些参数,默认b1=0.9,b2=0.999,ℇ=10^(-8)。一般不需要变动,但是学习率需要多次调试找到合适值。

相关推荐
C++ 老炮儿的技术栈5 分钟前
KUKA机器人程序抓料
linux·运维·c语言·人工智能·机器人·库卡
wangmengxxw7 分钟前
SpringAI-简介及入门案例
人工智能·springai
IT阳晨。9 分钟前
【CNN卷积神经网络(吴恩达)】深度卷积网络(实例探究)学习笔记
深度学习·cnn
Elastic 中国社区官方博客17 分钟前
Agent Builder,超越聊天框:推出增强型基础设施
大数据·运维·人工智能·elasticsearch·搜索引擎·ai·全文检索
Elastic 中国社区官方博客22 分钟前
使用 Elastic Agent Builder 构建语音 agents
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·语音识别
MM_MS24 分钟前
Halcon图像采集助手、ROI操作和画图、ROI实现区域与轮廓之间的相互转换、区域的交集差集取反
图像处理·人工智能·数码相机·算法·目标检测·计算机视觉·视觉检测
莫非王土也非王臣26 分钟前
网页端的TensorFlow开发实践
人工智能·python·tensorflow
victory043134 分钟前
medicalgpt项目微调准备
人工智能
爱吃肉的鹏1 小时前
树莓派4B连接无线
人工智能·树莓派
小Tomkk1 小时前
PyTorch +YOLO + Label Studio + 图像识别 深度学习项目实战 (一)
人工智能·pytorch·yolo