3.MySQL面试题之Redis 和 Mysql 如何保证数据一致性?

Redis 和 MySQL 数据一致性是分布式系统中的一个常见挑战。保证数据一致性通常涉及几种策略,我会详细解释这些策略并提供相应的代码示例。

  1. 先更新数据库,再更新缓存

这种方法先更新 MySQL,然后更新或删除 Redis 缓存。

java 复制代码
@Transactional
public void updateUser(User user) {
    // 1. 更新MySQL
    userMapper.updateUser(user);
    
    // 2. 更新Redis缓存
    // 方式1:更新缓存
    redisTemplate.opsForValue().set("user:" + user.getId(), user);
    
    // 方式2:删除缓存(推荐)
    redisTemplate.delete("user:" + user.getId());
}

优点:

  • 简单直接
  • 保证数据库有最新数据

缺点:

  • 如果更新缓存失败,会导致数据不一致
  1. 先删除缓存,再更新数据库

这种方法先删除 Redis 缓存,然后更新 MySQL。

java 复制代码
@Transactional
public void updateUser(User user) {
    // 1. 删除Redis缓存
    redisTemplate.delete("user:" + user.getId());
    
    // 2. 更新MySQL
    userMapper.updateUser(user);
}

优点:

  • 避免缓存更新失败导致的不一致

缺点:

  • 在高并发情况下可能出现数据不一致
  1. 延迟双删策略

这种方法在更新数据库前后都删除缓存,并在第二次删除时增加短暂延迟。

java 复制代码
@Transactional
public void updateUser(User user) {
    // 1. 删除Redis缓存
    redisTemplate.delete("user:" + user.getId());
    
    // 2. 更新MySQL
    userMapper.updateUser(user);
    
    // 3. 延迟一段时间后再次删除缓存
    CompletableFuture.runAsync(() -> {
        try {
            Thread.sleep(500); // 延迟500毫秒
            redisTemplate.delete("user:" + user.getId());
        } catch (InterruptedException e) {
            // 处理异常
        }
    });
}

优点:

  • 能够处理高并发场景下的数据一致性问题

缺点:

  • 实现较为复杂
  • 增加了系统延迟
  1. 使用消息队列

使用消息队列来保证数据一致性,先更新数据库,然后发送消息到队列,由消费者来更新缓存。

java 复制代码
@Transactional
public void updateUser(User user) {
    // 1. 更新MySQL
    userMapper.updateUser(user);
    
    // 2. 发送消息到消息队列
    kafkaTemplate.send("user-update-topic", JSON.toJSONString(user));
}

// 在消费者服务中
@KafkaListener(topics = "user-update-topic")
public void consumeUserUpdate(String message) {
    User user = JSON.parseObject(message, User.class);
    // 更新Redis缓存
    redisTemplate.opsForValue().set("user:" + user.getId(), user);
}

优点:

  • 解耦了数据库操作和缓存操作
  • 可以处理高并发场景

缺点:

  • 增加了系统复杂度
  • 可能引入短暂的数据不一致
  1. 使用 Canal 进行 MySQL binlog 同步

使用 Canal 监听 MySQL 的 binlog,然后更新 Redis 缓存。

java 复制代码
@Component
public class CanalClient {

    @Autowired
    private RedisTemplate<String, String> redisTemplate;

    @PostConstruct
    public void init() {
        CanalConnector connector = CanalConnectors.newSingleConnector(
            new InetSocketAddress("127.0.0.1", 11111), 
            "example", "", "");
        
        try {
            connector.connect();
            connector.subscribe(".*\\..*");
            
            while (true) {
                Message message = connector.getWithoutAck(100);
                long batchId = message.getId();
                List<CanalEntry.Entry> entries = message.getEntries();
                
                if (batchId != -1 && entries.size() > 0) {
                    for (CanalEntry.Entry entry : entries) {
                        if (entry.getEntryType() == CanalEntry.EntryType.ROWDATA) {
                            CanalEntry.RowChange rowChange = CanalEntry.RowChange.parseFrom(entry.getStoreValue());
                            
                            if (rowChange.getEventType() == CanalEntry.EventType.UPDATE) {
                                for (CanalEntry.RowData rowData : rowChange.getRowDatasList()) {
                                    // 处理更新操作,更新Redis缓存
                                    updateRedisCache(rowData);
                                }
                            }
                        }
                    }
                }
                connector.ack(batchId);
            }
        } finally {
            connector.disconnect();
        }
    }

    private void updateRedisCache(CanalEntry.RowData rowData) {
        // 根据rowData更新Redis缓存
        // 这里需要根据具体的数据结构来实现
    }
}

优点:

  • 实时性高
  • 对应用层代码无侵入

缺点:

  • 配置和维护相对复杂
  • 依赖 MySQL binlog 配置

总结:

  1. 选择哪种方案取决于具体的业务需求、系统架构和性能要求。
  2. 对于读多写少的场景,可以考虑使用"先更新数据库,再删除缓存"的策略。
  3. 对于高并发场景,可以考虑使用延迟双删或消息队列的方案。
  4. 对于实时性要求高的场景,可以考虑使用 Canal 进行 binlog 同步。
  5. 无论选择哪种方案,都需要考虑异常处理和重试机制,以提高系统的可靠性。

在实际应用中,可

相关推荐
Arbori_2621513 分钟前
获取oracle表大小
数据库·oracle
王强你强19 分钟前
MySQL 高级查询:JOIN、子查询、窗口函数
数据库·mysql
草巾冒小子20 分钟前
brew 安装mysql,启动,停止,重启
数据库·mysql
用户62799471826227 分钟前
南大通用GBase 8c分布式版本gha_ctl 命令-HI参数详解
数据库
斯汤雷35 分钟前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化
SQLplusDB42 分钟前
Oracle 23ai Vector Search 系列之3 集成嵌入生成模型(Embedding Model)到数据库示例,以及常见错误
数据库·oracle·embedding
喝醉酒的小白1 小时前
SQL Server 可用性组自动种子设定失败问题
数据库
chem41111 小时前
Conmon lisp Demo
服务器·数据库·lisp
爱的叹息1 小时前
Java 连接 Redis 的驱动(Jedis、Lettuce、Redisson、Spring Data Redis)分类及对比
java·redis·spring
m0_555762901 小时前
QT 动态布局实现(待完善)
服务器·数据库·qt