python实现粒子群优化算法

粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,它通过模拟鸟群觅食的行为来解决问题。在PSO中,每个优化问题的解被视作搜索空间中的一个粒子,所有粒子都有一个由被优化函数决定的适应度值(fitness value),并且每个粒子都跟随两个"最佳位置"来更新自己的位置:一是粒子本身迄今为止找到的最佳位置(个体极值 pbest),二是整个种群迄今为止找到的最佳位置(全局极值 gbest)。

以下是一个使用Python实现的简单粒子群优化算法的示例,该算法用于求解一维函数的最小值问题(例如,f(x) = x^2):

|---|----------------------------------------------------------------------------------------|
| | import numpy as np |
| | |
| | class Particle: |
| | def __init__(self, bounds, fitness_func): |
| | self.position = np.random.uniform(bounds[0], bounds[1], 1) |
| | self.velocity = np.zeros_like(self.position) |
| | self.pbest_position = self.position.copy() |
| | self.pbest_value = fitness_func(self.position) |
| | |
| | def update_velocity(self, global_best_position, w=0.5, c1=1.0, c2=2.0): |
| | r1, r2 = np.random.rand(), np.random.rand() |
| | cognitive_component = c1 * r1 * (self.pbest_position - self.position) |
| | social_component = c2 * r2 * (global_best_position - self.position) |
| | self.velocity = w * self.velocity + cognitive_component + social_component |
| | |
| | def update_position(self, bounds): |
| | self.position += self.velocity |
| | # 边界处理 |
| | self.position = np.clip(self.position, bounds[0], bounds[1]) |
| | |
| | def evaluate(self, fitness_func): |
| | current_value = fitness_func(self.position) |
| | if current_value < self.pbest_value: |
| | self.pbest_value = current_value |
| | self.pbest_position = self.position.copy() |
| | |
| | class PSO: |
| | def __init__(self, num_particles, bounds, fitness_func, max_iter=100): |
| | self.num_particles = num_particles |
| | self.bounds = bounds |
| | self.fitness_func = fitness_func |
| | self.max_iter = max_iter |
| | self.particles = [Particle(bounds, fitness_func) for _ in range(num_particles)] |
| | self.gbest_position = None |
| | self.gbest_value = float('inf') |
| | |
| | def optimize(self): |
| | for iteration in range(self.max_iter): |
| | for particle in self.particles: |
| | particle.evaluate(self.fitness_func) |
| | if particle.pbest_value < self.gbest_value: |
| | self.gbest_value = particle.pbest_value |
| | self.gbest_position = particle.pbest_position.copy() |
| | |
| | for particle in self.particles: |
| | particle.update_velocity(self.gbest_position) |
| | particle.update_position(self.bounds) |
| | |
| | # 输出进度(可选) |
| | if iteration % 10 == 0: |
| | print(f"Iteration {iteration}: Best Value = {self.gbest_value}") |
| | |
| | return self.gbest_position, self.gbest_value |
| | |
| | # 示例使用 |
| | def fitness_func(x): |
| | return x**2 |
| | |
| | bounds = [-10, 10] # 定义搜索范围 |
| | pso = PSO(num_particles=30, bounds=bounds, fitness_func=fitness_func, max_iter=100) |
| | best_position, best_value = pso.optimize() |
| | print(f"Best Position: {best_position}, Best Value: {best_value}") |

这段代码首先定义了Particle类来表示每个粒子,它包含了粒子的位置、速度、个体最佳位置和对应的值。PSO类用于管理整个粒子群,包括初始化粒子、执行优化循环、更新粒子速度和位置以及处理边界条件。在优化循环中,每个粒子都会更新其速度和位置,并检查是否需要更新其个体最佳位置和全局最佳位置。。

相关推荐
2的n次方_9 分钟前
CANN Ascend C 编程语言深度解析:异构并行架构、显式存储层级与指令级精细化控制机制
c语言·开发语言·架构
m0_736919109 分钟前
用Pandas处理时间序列数据(Time Series)
jvm·数据库·python
getapi12 分钟前
实时音视频传输与屏幕共享(投屏)
python
iAkuya25 分钟前
(leetcode)力扣100 62N皇后问题 (普通回溯(使用set存储),位运算回溯)
算法·leetcode·职场和发展
近津薪荼25 分钟前
dfs专题5——(二叉搜索树中第 K 小的元素)
c++·学习·算法·深度优先
xiaoye-duck27 分钟前
吃透 C++ STL list:从基础使用到特性对比,解锁链表容器高效用法
c++·算法·stl
松☆30 分钟前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型
java干货41 分钟前
为什么 “File 10“ 排在 “File 2“ 前面?解决文件名排序的终极算法:自然排序
开发语言·python·算法
_F_y41 分钟前
C语言重点知识总结(含KMP详细讲解)
c语言·开发语言
机器懒得学习42 分钟前
智能股票分析系统
python·深度学习·金融