分布式ID-一窥雪花算法的原生实现问题与解决方案(CosId)

分布式ID-雪花算法的问题与方案(CosId)

基本原理

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传](https://img-home.csdnimg.cn/images/20230724024159.png?origin_url=分布式ID-雪花算法的问题与方案(CosId)_image.\&pos_id=img-SZPkqRew-1724123351152)

Snowflake算法的原理相对直观,它有不同的部分组成,每个部分单独来看可能会导致重复,但是组合在一起做到全局唯一。

它负责生成一个64位(long型)的全局唯一ID,这个ID的构成包括:1位无用的符号位, 41位的时间戳, 10位的机器ID. 以及12位的序列号,除了固定的1位符号位之外,其余的三个部分都可以根据实际需求进行调整:

  1. 41位时间戳=(1L<<41)/(1000/3600/24/365) :这部分能够表示的时间跨度大约69年。即可以使用的绝对时间为EPOCH+69年,一般我们需要自定义EPOCH为产品开发时间,另外还可以通过压缩其他区域的分配位数,来增加时间戳位数来延长可用时间。
  2. 10位工作进程ID=(1L<<10)=1024:时间戳可以保证单台机器单调递增不重复,但是如果是不同机器的集群呢?那么就有可能产生相同的时间戳。这时候就可以把进程ID给拼接上来,机器ID可以唯一标识最多1024个相同的业务。
  3. 12位自增序列号=(1L<<12)*1000=4096000:如果在同一个进程中有多个线程同时生成,那么还是会产 生相同的ID,怎么办?那就再加上一个严格递增的序列位。这样就整体保证了全局的唯一性。

存在的问题

时间戳的坑:时钟回拨问题

服务器时钟回拨是由于在某些情况下,服务器的系统时钟会发生不可避免或人为的变化,在高并发场景下, 获得的高精度时间戳,有时候会往前跳,有时候又会往回拨。一旦时钟往回拨,就有可能产生重复的ID,这 就是时钟回拨问题。

解决的方法有很多,雪花算法对此并没有标准解决方案,不同框架有自己的解决方法,但是基本思路都是用上一次生成主键的时间戳,然后拿当前时间和上一次的时间进行比较,只是发现有问题后的解决方式会有不同:

  • shardingsphere解决方案:如果出现回拨(当前时间小于上一次获取的时间),当前线程就暂时sleep一小段时间,然后重新获取时间戳。
text-x-java 复制代码
    @SneakyThrows(InterruptedException.class)
    private boolean waitTolerateTimeDifferenceIfNeed(final long currentMillis) {
        if (lastMillis.get() <= currentMillis) {
            return false;
        }
        long timeDifferenceMillis = lastMillis.get() - currentMillis;
        ShardingSpherePreconditions.checkState(timeDifferenceMillis < maxTolerateTimeDifferenceMillis,
                () -> new AlgorithmExecuteException(this, "Clock is moving backwards, last time is %d milliseconds, current time is %d milliseconds.", lastMillis.get(), currentMillis));
        Thread.sleep(timeDifferenceMillis);
        return true;
    }
  • CosId框架发现时钟回拨直接抛出异常。
text-x-java 复制代码
AbstractSnowflakeId

long currentTimestamp = getCurrentTime();
if (currentTimestamp < lastTimestamp) {
   throw new ClockBackwardsException(lastTimestamp, currentTimestamp);
}
  • 使用ntpd这样的时间同步服务。
  • 美团的Leaf服务:时间戳不依赖本地的服务,放在第三方服务统一管理和获取,省却了时间同步的麻烦,但是因为会依赖网络通信,从而产生IO效率和可用性问题。

工作进程ID如何分配问题

SnowflakeId 中根据业务设计的位分配方案确定了基本上就不再有变更了,也很少需要维护。但是工作进程ID总是需要配置的,而且集群中是不能重复的,还要考虑服务重启后分配ID保持稳定性,否则分区原则就会被破坏而导致ID唯一性原则破坏,当集群规模较大时工作进程ID的维护工作是非常繁琐,低效的。

COSID提供的方案如下:

MachineIdDistributorSnowflakeId 的机器号分配器,它负责分配机器号,同时还会存储MachineId的上一次时间戳,用于启动时时钟回拨的检查。

目前 CosId 提供了以下六种 MachineId 分配器。

  • ManualMachineIdDistributor: 手动配置machineId,一般只有在集群规模非常小的时候才有可能使用,不推荐。
  • StatefulSetMachineIdDistributor: 使用KubernetesStatefulSet提供的稳定的标识ID(HOSTNAME=service-01)作为机器号。
  • RedisMachineIdDistributor: 使用Redis 作为机器号的分发存储,同时还会存储MachineId的上一次时间戳,用于启动时时钟回拨的检查。
  • JdbcMachineIdDistributor: 使用关系型数据库 作为机器号的分发存储,同时还会存储MachineId的上一次时间戳,用于启动时时钟回拨的检查。
  • ZookeeperMachineIdDistributor: 使用ZooKeeper 作为机器号的分发存储,同时还会存储MachineId的上一次时间戳,用于启动时时钟回拨的检查。
  • MongoMachineIdDistributor: 使用MongoDB 作为机器号的分发存储,同时还会存储MachineId的上一次时间戳,用于启动时时钟回拨 的检查。

对于实例应用分成两类,一类是stable应用,就是稳定的应用,一类是不稳定的应用。以JdbcMachineIdDistributor分发器为例:

  • 不稳定的应用会回收机器号。每个新应用启动时在cosid_machine表就会有一条记录,并把分配的机器号写到machine_id字段,那么应用实例怎么跟这个机器号关联呢?这条记录还有一个instance_id字段(默认为ip:pid), 当这个应用设置成不稳定的应用时,instance_id字段在写入后暂时与分配的机器号形成了关联关系,然而到应用停止时,Spring的SmartLifecycle回调会回收这个关系(清空这条记录的instance_id字段),这条记录也不是不再用了,它会等待其它应用启动时重新回收利用(重新写入instance_id字段以建立关联关系)。
  • 稳定的应用相比不稳定的应用就是应用停止时不会有回收的动作,并且在本地的.cosid-machine-state目录会保存当前应用的机器号和时间戳,下次启动时还是会找到同一条记录。

下图展示了CosId分配工作进程id的过程:

序列号部分的不连续性

在雪花算法中,排在最后的12位自增序列号部分,默认的生成逻辑是当时间戳部分相等时,自增序列号部分才会+1,否则,将从0重新开始。我们想想这样的话会有什么问题,因为时间戳相同的情况很少,所以我们生成出来的id末尾大部分会导致取模的时候分布并不均匀,比如分库分表时,数据大部分就会落到一个地方,不适用于需要做取模运算的场景。

我们先复现一下问题,使用hutool的雪花算法工具类生成唯一id,然后做一个简单的取模运算:

text-x-java 复制代码
    @Test
    public void hutoolSnowflakeMod() throws InterruptedException {
        for (int i = 0; i < 100; i++) {
            long id = IdUtil.getSnowflake(1).nextId();
            Thread.sleep(1);
            log.info("id: {}, after mod 4: {}", id, id % 4);
        }
    }

截取的结果可以看到,基本上就是0,几乎没有其它数字,取模的结果很不均匀。

text-x-java 复制代码
[2024-08-19 15:46:45.486] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244152344576, after mod 4: 0
[2024-08-19 15:46:45.487] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244160733184, after mod 4: 0
[2024-08-19 15:46:45.490] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244164927488, after mod 4: 0
[2024-08-19 15:46:45.492] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244177510400, after mod 4: 0
[2024-08-19 15:46:45.493] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244185899008, after mod 4: 0
[2024-08-19 15:46:45.496] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244190093312, after mod 4: 0
[2024-08-19 15:46:45.498] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244202676224, after mod 4: 0
[2024-08-19 15:46:45.501] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244211064832, after mod 4: 0
[2024-08-19 15:46:45.503] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244223647744, after mod 4: 0
[2024-08-19 15:46:45.505] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244232036352, after mod 4: 0
[2024-08-19 15:46:45.507] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.hutoolSnowflakeMod(41)] - id: 1825439244240424960, after mod 4: 0

在CosId框架中,解决方案也很简单 -- 轻易不要重置这个自增序列位即可,通过引入 sequenceResetThreshold 属性,巧妙地解决了取模分片不均匀的问题,这一设计在无需牺牲性能的同时,为用户提供了更加出色的使用体验。

sequenceResetThreshold 在不同的情况下可能会取不同的值,但是作用都是一样的,通过限制自增序列不要轻易重置来达到目的。

text-x-java 复制代码
AbstractSnowflakeId

//region Reset sequence based on sequence reset threshold,Optimize the problem of uneven sharding.

if (currentTimestamp > lastTimestamp
   && sequence >= sequenceResetThreshold) {
   sequence = 0L;
}

我们跑一遍CosId的取模情况:

text-x-java 复制代码
    @Test
    public void cosIdSnowflakeMod() throws InterruptedException {
        for (int i = 0; i < 100; i++) {
            long id = snowflakeId.generate();
            Thread.sleep(1);
            log.info("id: {}, after mod 4: {}", id, id % 4);
        }
    }

可以看出已经不存在取模分配不均匀的问题

text-x-java 复制代码
[2024-08-19 15:50:35.949] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209755045889, after mod 4: 1
[2024-08-19 15:50:35.951] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209763434498, after mod 4: 2
[2024-08-19 15:50:35.953] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209771823107, after mod 4: 3
[2024-08-19 15:50:35.955] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209780211716, after mod 4: 0
[2024-08-19 15:50:35.957] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209788600325, after mod 4: 1
[2024-08-19 15:50:35.959] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209796988934, after mod 4: 2
[2024-08-19 15:50:35.961] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209805377543, after mod 4: 3
[2024-08-19 15:50:35.963] [Test worker] [ INFO] [o.OakHybridCacheWithDBCosIdTest.cosIdSnowflakeMod(50)] - id: 615936209813766152, after mod 4: 0

JavaScript数值溢出

JavaScriptNumber.MAX_SAFE_INTEGER只有53-bit,如果直接将63位的SnowflakeId返回给前端,那么会产生值溢出的情况(所以这里我们应该知道后端传给前端的long值溢出问题,迟早会出现,只不过SnowflakeId出现得更快而已)。 很显然溢出是不能被接受的,一般可以使用以下俩种处理方案:

  • 将生成的63-bitSnowflakeId转换为String类型。
    • 直接将long转换成String
    • (CosId方案)使用SnowflakeFriendlyIdSnowflakeId转换成比较友好的字符串表示:{timestamp}-{machineId}-{sequence} -> 20210623131730192-1-0
  • 自定义SnowflakeId位分配来缩短SnowflakeId的位数(53-bit)使 ID 提供给前端时不溢出
    • (CosId方案)使用SafeJavaScriptSnowflakeId(JavaScript 安全的 SnowflakeId)
相关推荐
重生之绝世牛码1 分钟前
Java设计模式 —— 【结构型模式】外观模式详解
java·大数据·开发语言·设计模式·设计原则·外观模式
小蜗牛慢慢爬行7 分钟前
有关异步场景的 10 大 Spring Boot 面试问题
java·开发语言·网络·spring boot·后端·spring·面试
新手小袁_J32 分钟前
JDK11下载安装和配置超详细过程
java·spring cloud·jdk·maven·mybatis·jdk11
呆呆小雅32 分钟前
C#关键字volatile
java·redis·c#
Monly2133 分钟前
Java(若依):修改Tomcat的版本
java·开发语言·tomcat
Ttang2335 分钟前
Tomcat原理(6)——tomcat完整实现
java·tomcat
钱多多_qdd1 小时前
spring cache源码解析(四)——从@EnableCaching开始来阅读源码
java·spring boot·spring
waicsdn_haha1 小时前
Java/JDK下载、安装及环境配置超详细教程【Windows10、macOS和Linux图文详解】
java·运维·服务器·开发语言·windows·后端·jdk
Q_19284999061 小时前
基于Spring Boot的摄影器材租赁回收系统
java·spring boot·后端
Code_流苏1 小时前
VSCode搭建Java开发环境 2024保姆级安装教程(Java环境搭建+VSCode安装+运行测试+背景图设置)
java·ide·vscode·搭建·java开发环境