局部整体(三)利用python绘制饼图

局部整体(三)利用python绘制饼图

饼图( Pie Plot)简介

饼图是一个将整体划分为几个扇形的圆形统计图表,用于描述数量、频率或百分比之间的相对关系。饼形图适合用来快速展示数据比例分布,但不利于展示较多项目。饼图也因过于关注不同部分彼此或相对于整体的大小关系,导致与其他饼形图作整体比较时不能显示出任何变化而饱受诟病。

快速绘制

  1. 基于matplotlib

    python 复制代码
    import matplotlib.pyplot as plt
    
    # 自定义数据
    size_of_groups=[12,11,3,30]
    
    # 利用pie函数快速创建
    plt.pie(size_of_groups)
    plt.show()

定制多样化的饼图

自定义饼图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。

关于pie的更多用法可参考matplotlib.pyplot.pie

  1. 自定义饼图

    python 复制代码
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    from matplotlib_venn import venn3, venn3_circles
    
    plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
    
    # 自定义数据
    names='groupA', 'groupB', 'groupC', 'groupD',
    values=[12,11,3,30]
    
    # 初始化布局
    fig = plt.figure(figsize=(12,8))
    
    # 添加标签
    plt.subplot(1, 4, 1) 
    plt.pie(values, labels=names, labeldistance=1.15)
    plt.title('添加标签')
    
    # 自定义扇形
    plt.subplot(1, 4, 2) 
    plt.pie(values, labels=names, labeldistance=1.15, wedgeprops = { 'linewidth' : 3, 'edgecolor' : 'white' })
    plt.title('自定义扇形')
    
    # 自定义颜色
    plt.subplot(1, 4, 3) 
    colors = ['#4F6272', '#B7C3F3', '#DD7596', '#8EB897']
    plt.pie(values, labels=names, labeldistance=1.15, 
                wedgeprops = { 'linewidth' : 1, 'edgecolor' : 'white' }, colors=colors)
    plt.title('自定义颜色')
    
    # 显示百分比
    plt.subplot(1, 4, 4) 
    plt.pie(values, labels=names, autopct='%1.1f%%')
    plt.title('显示百分比')
    
    plt.show()
  2. 拓展-警惕饼图带来的阅读障碍

    观察比较三个图形中哪个分组的值最高,同时尝试找出各组之间的值的变化趋势

    是不是很难看出来,下面将饼图转化为条形图再看看呢?

    python 复制代码
    # 饼图比较
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    
    plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
    
    # 自定义标签
    labels = ['a', 'b', 'c', 'd', 'e']
    
    # 初始化布局
    fig = plt.figure(figsize=(12,5))
    
    # 饼图1
    plt.subplot(1, 3, 1) 
    plt.pie([17,18,20,22,24], labels=labels)
    
    # 饼图2
    plt.subplot(1, 3, 2) 
    plt.pie([20,18,21,20,20], labels=labels)
    
    # 饼图3
    plt.subplot(1, 3, 3) 
    plt.pie([24,23,21,19,18], labels=labels)
    
    plt.show()
    python 复制代码
    # 条形图比较
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import seaborn as sns
    
    plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
    
    # 自定义标签
    labels = ['a', 'b', 'c', 'd', 'e']
    
    # 初始化布局
    fig = plt.figure(figsize=(12,3))
    
    # 条形图1
    plt.subplot(1, 3, 1) 
    sns.barplot(x=labels, y=[17,18,20,22,24], errorbar=None)
    
    # 条形图2
    plt.subplot(1, 3, 2) 
    sns.barplot(x=labels, y=[20,18,21,20,20], errorbar=None)
    
    # 条形图3
    plt.subplot(1, 3, 3) 
    sns.barplot(x=labels, y=[24,23,21,19,18], errorbar=None)
    
    
    plt.show()

    总结

    以上通过matplotlib的pie快速绘制饼图,并通过修改参数或者辅以其他绘图知识自定义各种各样的饼图来适应相关使用场景。也提醒了在多个饼图间进行比较的困难,更建议使用条形图。

    共勉~

相关推荐
antonytyler13 小时前
机器学习实践项目(二)- 房价预测增强篇 - 特征工程四
人工智能·python·机器学习
gCode Teacher 格码致知13 小时前
Python教学基础:用Python和openpyxl结合Word模板域写入数据-由Deepseek产生
python·word
饼干,13 小时前
第5天python内容
开发语言·python
ZhengEnCi14 小时前
P3E-Python Lambda表达式完全指南-什么是匿名函数?为什么90%程序员都在用?怎么快速掌握函数式编程利器?
后端·python
Ace_317508877614 小时前
京东商品详情接口深度解析:从反爬绕过到数据结构化重构
数据结构·python·重构
尤利乌斯.X14 小时前
在Java中调用MATLAB函数的完整流程:从打包-jar-到服务器部署
java·服务器·python·matlab·ci/cd·jar·个人开发
听风吟丶14 小时前
Java 9 + 模块化系统实战:从 Jar 地狱到模块解耦的架构升级
开发语言·python·pycharm
love530love14 小时前
【笔记】xFormers版本与PyTorch、CUDA对应关系及正确安装方法详解
人工智能·pytorch·windows·笔记·python·深度学习·xformers
2301_7644413314 小时前
Streamlit搭建内网视频通话系统
python·https·音视频
伟大的大威14 小时前
LLM + TFLite 搭建离线中文语音指令 NLU并部署到 Android 设备端
python·ai·nlu