局部整体(三)利用python绘制饼图

局部整体(三)利用python绘制饼图

饼图( Pie Plot)简介

饼图是一个将整体划分为几个扇形的圆形统计图表,用于描述数量、频率或百分比之间的相对关系。饼形图适合用来快速展示数据比例分布,但不利于展示较多项目。饼图也因过于关注不同部分彼此或相对于整体的大小关系,导致与其他饼形图作整体比较时不能显示出任何变化而饱受诟病。

快速绘制

  1. 基于matplotlib

    python 复制代码
    import matplotlib.pyplot as plt
    
    # 自定义数据
    size_of_groups=[12,11,3,30]
    
    # 利用pie函数快速创建
    plt.pie(size_of_groups)
    plt.show()

定制多样化的饼图

自定义饼图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。

关于pie的更多用法可参考matplotlib.pyplot.pie

  1. 自定义饼图

    python 复制代码
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    from matplotlib_venn import venn3, venn3_circles
    
    plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
    
    # 自定义数据
    names='groupA', 'groupB', 'groupC', 'groupD',
    values=[12,11,3,30]
    
    # 初始化布局
    fig = plt.figure(figsize=(12,8))
    
    # 添加标签
    plt.subplot(1, 4, 1) 
    plt.pie(values, labels=names, labeldistance=1.15)
    plt.title('添加标签')
    
    # 自定义扇形
    plt.subplot(1, 4, 2) 
    plt.pie(values, labels=names, labeldistance=1.15, wedgeprops = { 'linewidth' : 3, 'edgecolor' : 'white' })
    plt.title('自定义扇形')
    
    # 自定义颜色
    plt.subplot(1, 4, 3) 
    colors = ['#4F6272', '#B7C3F3', '#DD7596', '#8EB897']
    plt.pie(values, labels=names, labeldistance=1.15, 
                wedgeprops = { 'linewidth' : 1, 'edgecolor' : 'white' }, colors=colors)
    plt.title('自定义颜色')
    
    # 显示百分比
    plt.subplot(1, 4, 4) 
    plt.pie(values, labels=names, autopct='%1.1f%%')
    plt.title('显示百分比')
    
    plt.show()
  2. 拓展-警惕饼图带来的阅读障碍

    观察比较三个图形中哪个分组的值最高,同时尝试找出各组之间的值的变化趋势

    是不是很难看出来,下面将饼图转化为条形图再看看呢?

    python 复制代码
    # 饼图比较
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    
    plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
    
    # 自定义标签
    labels = ['a', 'b', 'c', 'd', 'e']
    
    # 初始化布局
    fig = plt.figure(figsize=(12,5))
    
    # 饼图1
    plt.subplot(1, 3, 1) 
    plt.pie([17,18,20,22,24], labels=labels)
    
    # 饼图2
    plt.subplot(1, 3, 2) 
    plt.pie([20,18,21,20,20], labels=labels)
    
    # 饼图3
    plt.subplot(1, 3, 3) 
    plt.pie([24,23,21,19,18], labels=labels)
    
    plt.show()
    python 复制代码
    # 条形图比较
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import seaborn as sns
    
    plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
    
    # 自定义标签
    labels = ['a', 'b', 'c', 'd', 'e']
    
    # 初始化布局
    fig = plt.figure(figsize=(12,3))
    
    # 条形图1
    plt.subplot(1, 3, 1) 
    sns.barplot(x=labels, y=[17,18,20,22,24], errorbar=None)
    
    # 条形图2
    plt.subplot(1, 3, 2) 
    sns.barplot(x=labels, y=[20,18,21,20,20], errorbar=None)
    
    # 条形图3
    plt.subplot(1, 3, 3) 
    sns.barplot(x=labels, y=[24,23,21,19,18], errorbar=None)
    
    
    plt.show()

    总结

    以上通过matplotlib的pie快速绘制饼图,并通过修改参数或者辅以其他绘图知识自定义各种各样的饼图来适应相关使用场景。也提醒了在多个饼图间进行比较的困难,更建议使用条形图。

    共勉~

相关推荐
程序员小远3 小时前
软件测试之单元测试详解
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
心无旁骛~3 小时前
python多进程和多线程问题
开发语言·python
星云数灵3 小时前
使用Anaconda管理Python环境:安装与验证Pandas、NumPy、Matplotlib
开发语言·python·数据分析·pandas·教程·环境配置·anaconda
计算机毕设匠心工作室4 小时前
【python大数据毕设实战】青少年抑郁症风险数据分析可视化系统、Hadoop、计算机毕业设计、包括数据爬取、数据分析、数据可视化、机器学习
后端·python
计算机毕设小月哥4 小时前
【Hadoop+Spark+python毕设】智能制造生产效能分析与可视化系统、计算机毕业设计、包括数据爬取、Spark、数据分析、数据可视化、Hadoop
后端·python·mysql
计算机毕设小月哥6 小时前
【Hadoop+Spark+python毕设】中风患者数据可视化分析系统、计算机毕业设计、包括数据爬取、Spark、数据分析、数据可视化、Hadoop
后端·python·mysql
Keep_Trying_Go6 小时前
基于Zero-Shot的目标计数算法详解(Open-world Text-specified Object Counting)
人工智能·pytorch·python·算法·多模态·目标统计
计算机毕设匠心工作室6 小时前
【python大数据毕设实战】强迫症特征与影响因素数据分析系统、Hadoop、计算机毕业设计、包括数据爬取、数据分析、数据可视化、机器学习、实战教学
后端·python·mysql
Trouville017 小时前
Pycharm软件初始化设置,字体和shell路径如何设置到最舒服
ide·python·pycharm