基于网络小说的多维度数据分析与可视化系统

文章目录

有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主

本项目可以通过数据爬虫,数据预处理,数据可视化,构建一个以分析和可视化的系统,具有很好的案例教学意义,初学者可以用来学习技术栈,同时也可以作为项目实践。

亮点功能

一、时间维度分析

时间线图: x:时间,Y:热度指标(字数、评论数、收藏数、总评数、营养液数等)展示小说发布时间与热度变化的关系,可以直观地看出小说热度随时间推移的变化趋势。

(1)动态柱形图+折线图:x:更新时间,Y:字数,不同类型小说在不同时期的受欢迎程度

(2)动态面积图:x:更新时间,Y:评论数

(3)动态柱状图:柱状图也可以用于展示时间线上的热度变化。

(4)动态气泡图:x:更新时间,Y:营养液数

二、主题维度分析

(1)主题动态词云图: 提取小说中高频词语,并以词云图的形式进行展示,可以直观地看出小说的主要主题和关键词。

(2)主题分布图(饼图、漏斗图):不同主题类型小说数量占比/数量

(3)主题热力图矩阵图:X轴:主题类别。与Y轴:热度指标:收藏数、评论数或者评分等关系图

三、文案情感维度分析

(1)文案词云图: 提取小说中情感词语,并以词云图的形式进行展示,可以直观地看出小说的情感倾向。

(2)文案情感分析图(动态多维度雷达图):积极/中和/消极,-1:负面情感,0中性情感,1正面情感。根据情感分析的结果,将每个时间点的情感倾向映射到相应的数值上。

情感趋势图: 展示小说情感倾向随时间推移的变化趋势,可以看出小说情感表达的变化规律(3)作者热度与其他变量的关系网络图

积分排名top5作者的积分与类型、进度、发表时间、章节、评论数、收藏数、总书评数等的关系图

四、预测分析

1、流行趋势预测:通过作者名称、作品、标签、类型等数据,可以分析出哪些类型的网络小说更受欢迎,哪些作者的作品更受欢迎,从而预测出未来可能会流行的网络小说类型和作者。

2、签约成功率预测:通过签约状态数据、作品数据等,可以分析出哪些类型的作品更容易被平台或出版社签约,从而帮助作者提高签约成功率。

每文一语

升级

相关推荐
莱茵菜苗4 分钟前
Python打卡训练营day46——2025.06.06
开发语言·python
爱学习的小道长6 分钟前
Python 构建法律DeepSeek RAG
开发语言·python
luojiaao33 分钟前
【Python工具开发】k3q_arxml 简单但是非常好用的arxml编辑器,可以称为arxml杀手包
开发语言·python·编辑器
英英_43 分钟前
视频爬虫的Python库
开发语言·python·音视频
猛犸MAMMOTH1 小时前
Python打卡第46天
开发语言·python·机器学习
多多*1 小时前
微服务网关SpringCloudGateway+SaToken鉴权
linux·开发语言·redis·python·sql·log4j·bootstrap
梓仁沐白1 小时前
【Kotlin】协程
开发语言·python·kotlin
产品何同学1 小时前
数据分析后台设计指南:实战案例解析与5大设计要点总结
数据挖掘·数据分析·产品经理·墨刀·原型设计·后台管理系统·数据分析后台
Java Fans2 小时前
在WPF项目中集成Python:Python.NET深度实战指南
python·.net·wpf
豌豆花下猫2 小时前
Python 潮流周刊#105:Dify突破10万星、2025全栈开发的最佳实践
后端·python·ai