-
一、torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False)功能:自动求取梯度
-
grad_tensors:多梯度权重
# 自动求取梯度 # import torch # w = torch.tensor([1.],requires_grad=True) # x = torch.tensor([2.],requires_grad=True) # a = torch.add(w, x) #逐位相加 # b = torch.add(w, 1) # y = torch.mul(a, b)# 逐位相乘 # # c = y.backward(retain_graph = True) # print(c)
-
create_graph:创建导数计算图,用于高阶求导
-
retain_graph:保存计算图
-
tensors:用于求导的张量,如 loss
-
2、torch.autograd.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False)功能:求取梯度
- outputs:用于求导的张量,如 loss
- inputs:需要梯度的张量
- create_graph:创建导数计算图,用于高阶求导
- retain_graph:保存计算图
- grad_outputs:多梯度权重
# 求取梯度 # import torch # x = torch.tensor([3.],requires_grad=True) # y = torch.pow(x, 2) # grad_1 = torch.autograd.grad(y, x, create_graph = True) # grad_2 = torch.autograd.grad(grad_1[0],x) # print(grad_2)
- 实例
# 实例,求y=x方的一阶与二阶偏导 import torch x = torch.tensor([3.], requires_grad=True) y = torch.pow(x,2) #求取一阶导数 grad_1 =torch.autograd.grad(y,x,create_graph=True) #求取二阶导数 grad_2 = torch.autograd.grad(grad_1,x) #此处值x是确定的,开始给定了3 # 展示一阶倒数的结果 print(grad_1) #展示二阶导数结果 print(grad_2) # 求取y=x的立方的一阶二阶三阶导数 # 创建x的初值 import torch # 创建x,并赋予初值 x = torch.tensor([2],requires_grad = True) # 创建y y = torch.pow(x, 3) # 做一阶导数 grad_1 = torch.autograd.grad(y, x, create_graph=True) # 做二阶导数 grad_2 = torch.autograd.grad(grad_1[0], x, create_graph=True) # 做三阶导数 grad_3 = torch.autograd.grad(grad_2[0], x, create_graph=False) print(grad_1) print(grad_2) print(grad_3)
-
pytorch自动微分
Fiona.y2024-08-23 9:39
相关推荐
董厂长1 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件G皮T5 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析九年义务漏网鲨鱼5 小时前
【大模型学习 | MINIGPT-4原理】元宇宙时间5 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态开发者工具分享5 小时前
文本音频违规识别工具排行榜(12选)产品经理独孤虾5 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像老任与码5 小时前
Spring AI Alibaba(1)——基本使用蹦蹦跳跳真可爱5896 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)雷羿 LexChien6 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)两棵雪松7 小时前
如何通过向量化技术比较两段文本是否相似?