pytorch自动微分

  1. 一、torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False)功能:自动求取梯度

    • grad_tensors:多梯度权重

      复制代码
      # 自动求取梯度
      # import torch
      # w = torch.tensor([1.],requires_grad=True)
      # x = torch.tensor([2.],requires_grad=True)
      # a = torch.add(w, x) #逐位相加
      # b = torch.add(w, 1)
      # y = torch.mul(a, b)# 逐位相乘
      #
      # c = y.backward(retain_graph = True)
      # print(c)
    • create_graph:创建导数计算图,用于高阶求导

    • retain_graph:保存计算图

    • tensors:用于求导的张量,如 loss

    • 2、torch.autograd.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False)功能:求取梯度

      • outputs:用于求导的张量,如 loss
      • inputs:需要梯度的张量
      • create_graph:创建导数计算图,用于高阶求导
      • retain_graph:保存计算图
      • grad_outputs:多梯度权重
      复制代码
      # 求取梯度
      # import torch
      # x = torch.tensor([3.],requires_grad=True)
      # y = torch.pow(x, 2)
      # grad_1 = torch.autograd.grad(y, x, create_graph = True)
      # grad_2 = torch.autograd.grad(grad_1[0],x)
      # print(grad_2)
      • 实例
      复制代码
      # 实例,求y=x方的一阶与二阶偏导
      import torch
      x = torch.tensor([3.], requires_grad=True)
      y = torch.pow(x,2)
      
      #求取一阶导数
      grad_1 =torch.autograd.grad(y,x,create_graph=True)
      
      #求取二阶导数
      grad_2 = torch.autograd.grad(grad_1,x) #此处值x是确定的,开始给定了3
      
      # 展示一阶倒数的结果
      print(grad_1)
      #展示二阶导数结果
      print(grad_2)
      
      # 求取y=x的立方的一阶二阶三阶导数
      
      # 创建x的初值
      import torch
      
      # 创建x,并赋予初值
      x = torch.tensor([2],requires_grad = True)
      # 创建y
      y = torch.pow(x, 3)
      # 做一阶导数
      grad_1 = torch.autograd.grad(y, x, create_graph=True)
      # 做二阶导数
      grad_2 = torch.autograd.grad(grad_1[0], x, create_graph=True)
      # 做三阶导数
      grad_3 = torch.autograd.grad(grad_2[0], x, create_graph=False)
      
      print(grad_1)
      print(grad_2)
      print(grad_3)
相关推荐
金智维科技官方3 分钟前
破解流程内耗,金智维流程自动化平台如何激活企业效率?
人工智能·ai·自动化·数字化
Brsentibi9 分钟前
深度学习—数据标注—label-studio
深度学习·数据标注·label-studio·yolo数据集自制
私域实战笔记20 分钟前
SCRM平台对比推荐:以企业微信私域运营需求为核心的参考
大数据·人工智能·企业微信·scrm·企业微信scrm
格林威24 分钟前
AOI在FPC制造领域的检测应用
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测·制造
utmhikari39 分钟前
【GitHub探索】代码开发AI辅助工具trae-agent
人工智能·ai·大模型·llm·github·agent·trae
IT_陈寒1 小时前
Python数据处理速度慢?5行代码让你的Pandas提速300% 🚀
前端·人工智能·后端
NewCarRen1 小时前
基于健康指标的自动驾驶全系统运行时安全分析方法
人工智能·安全·自动驾驶·预期功能安全
初心丨哈士奇1 小时前
前端Vibe Coding探索:Cursor+MCP打造沉浸式开发流(使用MCP与Cursor Rules让Vibe Coding更快速与精准)
前端·人工智能
艾莉丝努力练剑1 小时前
【Git:基本操作】深度解析Git:从初始Git到熟悉基本操作
大数据·linux·c++·人工智能·git·gitee·指令
机器之心1 小时前
上海AI Lab发布混合扩散语言模型SDAR:首个突破6600 tgs的开源扩散语言模型
人工智能·openai