pytorch自动微分

  1. 一、torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False)功能:自动求取梯度

    • grad_tensors:多梯度权重

      复制代码
      # 自动求取梯度
      # import torch
      # w = torch.tensor([1.],requires_grad=True)
      # x = torch.tensor([2.],requires_grad=True)
      # a = torch.add(w, x) #逐位相加
      # b = torch.add(w, 1)
      # y = torch.mul(a, b)# 逐位相乘
      #
      # c = y.backward(retain_graph = True)
      # print(c)
    • create_graph:创建导数计算图,用于高阶求导

    • retain_graph:保存计算图

    • tensors:用于求导的张量,如 loss

    • 2、torch.autograd.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False)功能:求取梯度

      • outputs:用于求导的张量,如 loss
      • inputs:需要梯度的张量
      • create_graph:创建导数计算图,用于高阶求导
      • retain_graph:保存计算图
      • grad_outputs:多梯度权重
      复制代码
      # 求取梯度
      # import torch
      # x = torch.tensor([3.],requires_grad=True)
      # y = torch.pow(x, 2)
      # grad_1 = torch.autograd.grad(y, x, create_graph = True)
      # grad_2 = torch.autograd.grad(grad_1[0],x)
      # print(grad_2)
      • 实例
      复制代码
      # 实例,求y=x方的一阶与二阶偏导
      import torch
      x = torch.tensor([3.], requires_grad=True)
      y = torch.pow(x,2)
      
      #求取一阶导数
      grad_1 =torch.autograd.grad(y,x,create_graph=True)
      
      #求取二阶导数
      grad_2 = torch.autograd.grad(grad_1,x) #此处值x是确定的,开始给定了3
      
      # 展示一阶倒数的结果
      print(grad_1)
      #展示二阶导数结果
      print(grad_2)
      
      # 求取y=x的立方的一阶二阶三阶导数
      
      # 创建x的初值
      import torch
      
      # 创建x,并赋予初值
      x = torch.tensor([2],requires_grad = True)
      # 创建y
      y = torch.pow(x, 3)
      # 做一阶导数
      grad_1 = torch.autograd.grad(y, x, create_graph=True)
      # 做二阶导数
      grad_2 = torch.autograd.grad(grad_1[0], x, create_graph=True)
      # 做三阶导数
      grad_3 = torch.autograd.grad(grad_2[0], x, create_graph=False)
      
      print(grad_1)
      print(grad_2)
      print(grad_3)
相关推荐
zstar-_2 分钟前
我用AI做了一个3D六子棋游戏
人工智能·游戏
guslegend20 分钟前
第2章:AI大模型知识和SpringAI核心案例实战
人工智能
魔镜前的帅比26 分钟前
Prompt 模板化设计(PromptTemplate)
人工智能·chatgpt·prompt
maray38 分钟前
在 MacOS 场景下体验 seekdb embeded
数据库·人工智能·seekdb
哥布林学者1 小时前
吴恩达深度学习课程二: 改善深层神经网络 第三周:超参数调整,批量标准化和编程框架 课后习题和代码实践
深度学习·ai
WWZZ20251 小时前
快速上手大模型:深度学习11(数据增强、微调、目标检测)
人工智能·深度学习·算法·目标检测·计算机视觉·大模型·具身智能
安如衫1 小时前
【机器学习基础】Attention in Transformers:注意力机制
笔记·深度学习·学习·机器学习·注意力机制
大白IT1 小时前
第四部分:决策规划篇——汽车的“大脑”(第8章:行为决策——车辆的“驾驶策略师”)
人工智能·算法·机器学习
2501_941148151 小时前
人工智能赋能智慧城市互联网应用:智能交通、环境监测与公共服务优化实践探索》
人工智能
大白IT2 小时前
第二部分:感知篇——汽车的“眼睛”与“耳朵”(第5章:环境感知与理解——从“看见”到“看懂”)
人工智能·目标跟踪·自动驾驶·汽车