-
一、torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False)功能:自动求取梯度
-
grad_tensors:多梯度权重
# 自动求取梯度 # import torch # w = torch.tensor([1.],requires_grad=True) # x = torch.tensor([2.],requires_grad=True) # a = torch.add(w, x) #逐位相加 # b = torch.add(w, 1) # y = torch.mul(a, b)# 逐位相乘 # # c = y.backward(retain_graph = True) # print(c)
-
create_graph:创建导数计算图,用于高阶求导
-
retain_graph:保存计算图
-
tensors:用于求导的张量,如 loss
-
2、torch.autograd.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False)功能:求取梯度
- outputs:用于求导的张量,如 loss
- inputs:需要梯度的张量
- create_graph:创建导数计算图,用于高阶求导
- retain_graph:保存计算图
- grad_outputs:多梯度权重
# 求取梯度 # import torch # x = torch.tensor([3.],requires_grad=True) # y = torch.pow(x, 2) # grad_1 = torch.autograd.grad(y, x, create_graph = True) # grad_2 = torch.autograd.grad(grad_1[0],x) # print(grad_2)
- 实例
# 实例,求y=x方的一阶与二阶偏导 import torch x = torch.tensor([3.], requires_grad=True) y = torch.pow(x,2) #求取一阶导数 grad_1 =torch.autograd.grad(y,x,create_graph=True) #求取二阶导数 grad_2 = torch.autograd.grad(grad_1,x) #此处值x是确定的,开始给定了3 # 展示一阶倒数的结果 print(grad_1) #展示二阶导数结果 print(grad_2) # 求取y=x的立方的一阶二阶三阶导数 # 创建x的初值 import torch # 创建x,并赋予初值 x = torch.tensor([2],requires_grad = True) # 创建y y = torch.pow(x, 3) # 做一阶导数 grad_1 = torch.autograd.grad(y, x, create_graph=True) # 做二阶导数 grad_2 = torch.autograd.grad(grad_1[0], x, create_graph=True) # 做三阶导数 grad_3 = torch.autograd.grad(grad_2[0], x, create_graph=False) print(grad_1) print(grad_2) print(grad_3)
-
pytorch自动微分
Fiona.y2024-08-23 9:39
相关推荐
rocksun2 小时前
认识Embabel:一个使用Java构建AI Agent的框架Java中文社群4 小时前
AI实战:一键生成数字人视频!AI大模型技术社4 小时前
🔧 PyTorch高阶开发工具箱:自定义模块+损失函数+部署流水线完整实现LLM大模型4 小时前
LangChain篇-基于SQL实现数据分析问答LLM大模型4 小时前
LangChain篇-整合维基百科实现网页问答DeepSeek忠实粉丝4 小时前
微调篇--基于GPT定制化微调训练聚客AI5 小时前
💡 图解Transformer生命周期:训练、自回归生成与Beam Search的视觉化解析神经星星5 小时前
从石英到铁电材料,哈佛大学提出等变机器学习框架,加速材料大规模电场模拟摆烂工程师6 小时前
Google One AI Pro 的教育学生优惠即将在六月底结束了!教你如何认证Gemini学生优惠!陈明勇6 小时前
MCP 官方开源 Registry 注册服务:基于 Go 和 MongoDB 构建