回归分析系列15— 贝叶斯回归进阶

18 贝叶斯回归进阶

18.1 简介

贝叶斯回归是通过贝叶斯推断来估计回归模型参数的方法。与经典的最小二乘法不同,贝叶斯回归在估计参数时结合了先验信息。通过贝叶斯方法,可以得到参数的后验分布,而不仅仅是一个点估计。

18.2 贝叶斯回归模型

贝叶斯回归模型将回归系数视为随机变量,假设其服从某个先验分布。然后根据观测数据更新先验分布,得到回归系数的后验分布。贝叶斯回归模型的核心公式如下:

其中,是回归系数的后验分布, 是似然函数,是先验分布。

在Python中,scikit-learn提供了BayesianRidge类来实现贝叶斯回归。

python 复制代码
from sklearn.linear_model import BayesianRidge
import numpy as np
import matplotlib.pyplot as plt

# 生成模拟数据
np.random.seed(42)
X = np.random.rand(100, 1)
y = 3 * X.squeeze() + 2 + np.random.randn(100)

# 构建贝叶斯回归模型
bayes_ridge = BayesianRidge()
bayes_ridge.fit(X, y)

# 预测
X_fit = np.linspace(0, 1, 100).reshape(-1, 1)
y_pred, y_std = bayes_ridge.predict(X_fit, return_std=True)

# 绘图
plt.scatter(X, y, color='blue')
plt.plot(X_fit, y_pred, color='red')
plt.fill_between(X_fit.squeeze(), y_pred - y_std, y_pred + y_std, color='pink', alpha=0.5)
plt.xlabel('X')
plt.ylabel('y')
plt.title('Bayesian Ridge Regression')
plt.show()

18.3 先验选择

贝叶斯回归的结果依赖于先验分布的选择。常用的先验分布有正态分布和拉普拉斯分布。正态分布通常用于岭回归的贝叶斯版本,而拉普拉斯分布则适用于套索回归的贝叶斯版本。

python 复制代码
# 设置不同的先验参数
bayes_ridge = BayesianRidge(alpha_1=1e-6, lambda_1=1e-6)
bayes_ridge.fit(X, y)

# 预测
y_pred, y_std = bayes_ridge.predict(X_fit, return_std=True)

# 绘图
plt.scatter(X, y, color='blue')
plt.plot(X_fit, y_pred, color='red')
plt.fill_between(X_fit.squeeze(), y_pred - y_std, y_pred + y_std, color='pink', alpha=0.5)
plt.xlabel('X')
plt.ylabel('y')
plt.title('Bayesian Ridge Regression with Different Priors')
plt.show()

18.4 后验推断与预测

贝叶斯回归的一个主要优点是可以通过后验分布来进行不确定性量化。通过后验分布,可以直接得到参数的置信区间,这对于模型解释非常有用。

18.5 高维数据中的贝叶斯回归

在高维数据中,贝叶斯回归可以通过选择适当的先验来控制模型复杂度,避免过拟合。贝叶斯回归还可以通过自动相关确定性推断技术(Automatic Relevance Determination, ARD)来识别重要的特征。

python 复制代码
from sklearn.linear_model import ARDRegression

# 构建ARD回归模型
ard = ARDRegression()
ard.fit(X, y)

# 预测
y_pred_ard, y_std_ard = ard.predict(X_fit, return_std=True)

# 绘图
plt.scatter(X, y, color='blue')
plt.plot(X_fit, y_pred_ard, color='red')
plt.fill_between(X_fit.squeeze(), y_pred_ard - y_std_ard, y_pred_ard + y_std_ard, color='pink', alpha=0.5)
plt.xlabel('X')
plt.ylabel('y')
plt.title('ARD Bayesian Regression')
plt.show()
相关推荐
AI浩2 天前
回归基础:让去噪生成模型真正去噪
人工智能·数据挖掘·回归
zenRRan3 天前
英伟达提出“思考用扩散,说话用自回归”:实现语言模型效率与质量的双赢!
人工智能·机器学习·语言模型·数据挖掘·回归
老鱼说AI4 天前
PyTorch 深度强化学习实战:从零手写 PPO 算法训练你的月球着陆器智能体
人工智能·pytorch·深度学习·机器学习·计算机视觉·分类·回归
Learn Beyond Limits10 天前
Regression vs. Classification|回归vs分类
人工智能·python·算法·ai·分类·数据挖掘·回归
mayubins10 天前
稳定边界层高度参数化方案的回归建模
人工智能·数据挖掘·回归
jerryinwuhan13 天前
Python数据挖掘之回归
python·数据挖掘·回归
大数据魔法师14 天前
分类与回归算法(三)- 逻辑回归
分类·回归·逻辑回归
qq_2546744115 天前
回归、分类、聚类
分类·回归·聚类
罗不丢15 天前
自回归模型例题(AR)与ACF/PACF图绘制
数据挖掘·回归·ar·acf·pacf
机器学习之心15 天前
MATLAB遗传算法优化RVFL神经网络回归预测(随机函数链接神经网络)
神经网络·matlab·回归