一、准备工作
进入百度智能云千帆大模型平台,点击应用接入-创建应用;按提默认完成创建
二、开始使用
单轮调用
进入API列表 - ModelBuilder以第一个**ERNIE-4.0-8K**为例,选择"HTTP请求调用",把第一步创建应用的 应用API Key、应用Secret Key替换到代码中,即可进行单轮对话。
python
import requests
import json
def get_access_token():
"""
使用 API Key,Secret Key 获取access_token,替换下列示例中的应用API Key、应用Secret Key
"""
url = "https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=[应用API Key]&client_secret=[应用Secret Key]"
payload = json.dumps("")
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
return response.json().get("access_token")
def main():
url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions_pro?access_token=" + get_access_token()
payload = json.dumps({
"messages": [
{
"role": "user",
"content": "介绍一下北京"
}
]
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
if __name__ == '__main__':
main()
多轮调用
每次请求调用5轮之前的会话,并且把response保存在会话记录参与到下一轮的调用。
python
import time
import pandas as pd
import json
import requests
API_KEY="API_KEY"
SECRET_KEY="SECRET_KEY"
menu=['query1','query2','query3','query4']
#上下文初始化
context=[]
context_prefix="文本的内容是:"
context_suffix="。文本中内容区分开便于后期做embedding"
#initial_question="你好,能帮我描述系统菜单吗?"
all_responses=[]
def get_access_token():
"""
使用AK,SK生成鉴权签名(AccessToken)
:return:access_token,或是None(如果错误)
"""
url="https://aip.baidubce.com/oauth/2.0/token"
params={"grant_type":"client_credentials","client_id":API_KEY,"client_secret":SECRET_KEY}
returnstr(requests.post(url,params=params).json().get("access_token"))
#Functiontoaddanewmessagetothecontextandmaintainthelatest5rounds
def update_context(new_assistant_response):
#添加用户的新提问
#context.append({"role":"user","content":new_user_input})
#添加模型的新回答
context.append({"role":"assistant","content":new_assistant_response})
#保持上下文的最新五轮对话(即10条消息)
if len(context)>9:
context.pop(0)
context.pop(0)
def get_desc_by_api(context):
url="https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions_pro? access_token="+get_access_token()
payload=json.dumps({
"messages":context
})
headers={
'Content-Type':'application/json'
}
response=requests.request("POST",url,headers=headers,data=payload)
returnresponse
definitialize_context():
context.extend([
{
"role":"user",
"content":"query1"
},{
"role":"assistant",
"content":"response1"
},{
"role":"user",
"content":"query2"
},{
"role":"assistant",
"content":"response2"
}
])
#context=context[0]
initialize_context()
print("context",context)
#模拟多轮对话
for i in range(len(menu)):
current_menu_item=menu[i]
#生成用户提问
new_user_input=context_prefix+current_menu_item+context_suffix
context.append({"role":"user","content":new_user_input})
#发送请求
api_response=get_desc_by_api(context)
print("status_code:",api_response.text)
ifapi_response.status_code==200:
new_assistant_response=api_response.json().get("result")
#更新上下文
update_context(new_assistant_response)
print(f"对话轮次{i+1},当前上下文:{context}")
response_entry={
"menu_item":current_menu_item,
"response":new_assistant_response
}
all_responses.append(response_entry)
#将所有回答存储到一个JSON文件中
with open('responses.json','w',encoding='utf-8') as f:
json.dump(all_responses,f,ensure_ascii=False,indent=4)