记忆化搜索与状态压缩:优化递归与动态规划的利器

记忆化搜索 是解决递归和动态规划问题的一种高效优化技术。它结合了递归的灵活性和动态规划的缓存思想,通过保存已经计算过的子问题结果,避免了重复计算,大幅提升了算法的效率。当问题状态复杂时,状态压缩技术可以进一步优化空间使用,尤其在处理大规模搜索问题时表现突出。本文将深入解析记忆化搜索的原理、应用,并结合状态压缩技术展示其在面试和算法竞赛中的常见应用。

1. 记忆化搜索的基本概念

1.1 什么是记忆化搜索?

记忆化搜索是一种递归与动态规划相结合的优化方法。它的核心思想是通过递归来解决问题,同时将已计算过的子问题结果保存起来(通常存储在数组或哈希表中),以便在后续调用时直接返回结果,避免重复计算。

1.2 记忆化搜索的应用场景

记忆化搜索常用于解决具有重叠子问题的递归问题。常见的应用场景包括:

  • 斐波那契数列:通过记忆化避免重复计算同一层次的结果。

  • 背包问题:在递归中缓存不同容量和物品选择的结果。

  • 图论中的最短路径问题:如 TSP 问题,通过记忆化减少不必要的重复计算。

1.3 示例:记忆化斐波那契数列

斐波那契数列的递归形式会重复计算很多相同的子问题,例如 fib(4) 会递归计算两次 fib(3)fib(2)。通过记忆化搜索,我们可以将中间结果存储起来,从而避免冗余计算。

java 复制代码
import java.util.HashMap;
import java.util.Map;
​
public class Fibonacci {
    private Map<Integer, Integer> memo = new HashMap<>();
​
    public int fib(int n) {
        if (n <= 1) return n;
        if (memo.containsKey(n)) return memo.get(n);  // 从缓存中获取
        int result = fib(n - 1) + fib(n - 2);
        memo.put(n, result);  // 将计算结果存入缓存
        return result;
    }
​
    public static void main(String[] args) {
        Fibonacci fib = new Fibonacci();
        System.out.println(fib.fib(10));  // 输出 55
    }
}

这种记忆化搜索通过保存已经计算过的斐波那契值,避免了指数级递归的时间开销,优化后的时间复杂度为 O(n)

2. 记忆化搜索与动态规划的关系

记忆化搜索可以看作是递归版本的动态规划,它们的核心思想都是缓存中间状态的结果,但在实现方式上有所不同:

  • 动态规划(DP):自底向上,通过填表方式迭代求解。

  • 记忆化搜索:自顶向下,通过递归求解的同时缓存结果。

2.1 选择记忆化搜索的场景

  • 递归结构清晰的场景:如果问题本质上是递归求解的,且递归结构容易表达,记忆化搜索往往是更直接的解决方法。

  • 状态空间较大且需要缓存中间结果 :记忆化搜索常用于那些状态多、空间大的问题,尤其适合结合状态压缩技术。

3. 状态压缩与记忆化搜索的结合

3.1 什么是状态压缩?

状态压缩的核心思想是将多个状态变量组合成一个数值或位掩码,以减少存储空间。例如,在图论问题中,可以用一个整数的二进制形式记录多个顶点的访问情况。这种方法通过紧凑的状态表示优化了存储效率,常用于处理复杂的动态规划问题。

3.2 状态压缩的应用场景

状态压缩与记忆化搜索的结合,能够解决很多复杂的图论和动态规划问题:

  • TSP 问题(旅行商问题):通过状态压缩记录已访问的城市,减少重复计算。

  • 棋盘覆盖问题:通过压缩棋盘状态,记录当前状态下的覆盖情况。

3.3 示例:TSP 问题中的状态压缩与记忆化搜索

旅行商问题要求找到一个最短路径,使得从起点经过每个城市恰好一次并回到起点。为了优化计算,我们使用状态压缩记录哪些城市已经访问过,并结合记忆化搜索来减少重复计算。

java 复制代码
import java.util.Arrays;
​
public class TSP {
    private int n;
    private int[][] dist;
    private int[][] dp;  // dp[state][i] 表示从起点经过 state 状态下到达 i 的最短路径
​
    public TSP(int n, int[][] dist) {
        this.n = n;
        this.dist = dist;
        this.dp = new int[1 << n][n];  // 状态压缩
        for (int[] row : dp) Arrays.fill(row, Integer.MAX_VALUE);
        dp[1][0] = 0;  // 起点到自身的距离为 0
    }
​
    public int solve() {
        for (int state = 1; state < (1 << n); state++) {
            for (int last = 0; last < n; last++) {
                if ((state & (1 << last)) == 0) continue;  // last 必须在当前状态中
                for (int prev = 0; prev < n; prev++) {
                    if ((state & (1 << prev)) == 0) continue;  // prev 必须在当前状态中
                    dp[state][last] = Math.min(dp[state][last], dp[state ^ (1 << last)][prev] + dist[prev][last]);
                }
            }
        }
        // 返回经过所有城市并回到起点的最短路径
        return Arrays.stream(dp[(1 << n) - 1]).min().getAsInt();
    }
​
    public static void main(String[] args) {
        int[][] dist = {
            {0, 10, 15, 20},
            {10, 0, 35, 25},
            {15, 35, 0, 30},
            {20, 25, 30, 0}
        };
        TSP tsp = new TSP(4, dist);
        System.out.println(tsp.solve());  // 输出 80
    }
}

在此代码中,我们使用位运算表示哪些城市已经被访问,并结合记忆化搜索记录每个状态下的最短路径,从而避免重复计算。

4. 实战案例:棋盘覆盖问题

4.1 问题描述

给定一个 N×M 的棋盘,要求将其分割成若干个 1×2 的长方形,问有多少种合法的分割方案。

例如当 N=2,M=4N=2,M=4 时,共有 55 种方案。当 N=2,M=3N=2,M=3 时,共有 33 种方案。

如下图所示:

4.2 记忆化搜索与状态压缩的结合

在棋盘覆盖问题中,我们使用位运算来表示每一列的状态,通过记忆化搜索来缓存中间状态,避免重复计算。状态转移则通过位运算来完成。

java 复制代码
import java.util.*;

public class Main{
    public static void main(String[] args) {
        Scanner sca = new Scanner(System.in);
        int N = 12, M = 1 << N;
        long[][] f = new long[N][M];
        int[][] state = new int[M][M];
        boolean[] st = new boolean[M];

        while (true) {
            int n = sca.nextInt();
            int m = sca.nextInt();
            //当 n 和 m 同时为 0 结束循环
            if (n == 0 && m == 0) {
                break;
            }

            for (int i = 0; i < 1<< n; i ++ ) {
                int cnt = 0;    //  表示的是当前 前面0的个数
                boolean flag = true;
                for (int j = 0; j < n; j ++ ) { // 从上倒下判断有多少个0
                    // 判断现在这位是不是 1
                    if ((i >> j & 1) == 1 ) {
                        //如果是1,判断1前面0的个数是不是偶数,奇数的话就结束
                        if ((cnt & 1) == 1) { // & 1  等于 1 就是奇数,反之是偶数
                            flag = false;
                            break;
                        }
                        cnt = 0;
                    } else {
                        cnt++; // 如果当前不是1 ,则 0 的个数 +1
                    }
                }
                // 最后还要判断一下最后一层0的个数是不是奇数
                if ((cnt & 1) == 1) flag = false;
                // 最后将这一种状态存入st数组,表示true 合法 或者false非法
                st[i] = flag;
            }

            // 这是 i- 1 到 i列的方块
            for (int i = 0; i < 1 << n; i ++ ) {
                // 将所有的状态清零,因为多组数据防止上一组的影响
                Arrays.fill(state[i], 0); 

                for(int j = 0; j < 1 << n; j ++ ) {
                    // 当满足 1. i 和 j没有相交(同一行的两列不能连续放置方块会重叠)
                    //        2. i - 1 列的空格数是不是偶数
                    if ((i & j) == 0 && st[i | j]) {
                        state[i][j] = 1;
                    }
                }
            }

            for (int i = 0; i < N; i ++ ) {
                // 因为有多组数据,防止上一组数据的干扰
                Arrays.fill(f[i], 0);
            }
            // 边界,横着在第一列方只有一种方案就是 什么也不放 
            f[0][0] = 1;

            // 最后的 DP部分
            //为什么从1开始呢,因为从0开始的话,我们定义的f[m][j]就是前i - 1列已经摆好
            //如果是0开始,就会从-1个开始摆好,因为我们没有-1列,所以从1开始
            for (int i = 1; i <= m ; i ++ ) {
                // 枚举 i - 1 到 i 的所有方案啊
                for (int j = 0; j < 1 << n; j ++) {
                    //枚举 i- 2 到 i- 1 的所有方案啊
                    for (int k = 0; k < 1 << n; k ++ ) {
                        // 现在的方案等于前面每种k方案的总和
                        if (state[j][k] == 1 ) {
                            f[i][j] += f[i - 1][k];
                        }
                    }
                }
            }

            System.out.println(f[m][0]);
        }
    }
}

详细题解请移步:蒙德里安的梦想

通过状态压缩,我们减少了空间消耗,并利用记忆化搜索提升了算法效率。

5. 性能分析与优化策略

5.1 时间与空间复杂度分析

记忆化搜索通过缓存结果,将递归问题的时间复杂度从指数级降低到线性级别;结合状态压缩后,还可以进一步减少空间消耗。在 TSP 问题中,时间复杂度为 O(n^2 * 2^n) ,空间复杂度也被压缩到**O(n * 2^n)**。

5.2 常见的优化策略

  • 剪枝:通过提前判断某些路径不可能达到最优解,避免无效计算。

  • 缓存状态:在动态规划中合理设计状态表示,确保状态能够准确地反映问题的当前进展,避免遗漏和重复。

6. 常见的位运算技巧

6.1 设置与检查位

  • 设置位state |= (1 << i) 将第 i 位设为 1

  • 检查位(state >> i) & 1 检查第 i 位是否为 1

  • 清除位state &= ~(1 << i) 将第 i 位设为 0

6.2 示例:动态规划中的位运算

位运算在很多图论问题和动态规划问题中都非常高效。通过对状态进行位操作,可以快速地进行状态转换和检查。

6.2.1问题描述

给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径。

Hamilton 路径的定义是从 0 到 n−1 不重不漏地经过每个点恰好一次。

java 复制代码
import java.util.*;
public class Main{
    public static void main(String[] args){
        Scanner scan = new Scanner(System.in);
        int N = 20, M = 1 << N;
        int[][] f = new int[M][N]; // f[state][j]: state状态下最后到达点j的最短路径
        int[][] w = new int[N][N]; // 权重矩阵 w[i][j]: 点i到点j的距离
        int n = scan.nextInt(); // 点的个数

        // 读取图的邻接矩阵
        for(int i = 0 ; i < n ; i ++ )
            for(int j = 0 ; j < n ; j ++ )
                w[i][j] = scan.nextInt(); 

        // 初始化动态规划数组,设置为正无穷
        for(int i = 0 ; i < 1 << n ; i ++ )
            Arrays.fill(f[i],0x3f3f3f); 
        f[1][0] = 0; // 起点是顶点0,状态为只访问了顶点0

        // 枚举所有的状态
        for(int state = 0 ; state < 1 << n ; state ++ ){
            for(int j = 0 ; j < n ; j ++ ){
                // 判断当前状态下是否访问过顶点 j
                if((state >> j & 1) == 1){ 
                    for(int k = 0 ; k < n ; k ++ ){
                        // 判断倒数第二步是否访问过顶点 k
                        if((state - (1 << j) >> k & 1) == 1){
                            // 状态转移
                            f[state][j] = Math.min(f[state][j], f[state - (1 << j)][k] + w[k][j]);
                        }
                    }
                }
            }
        }

        // 输出最终结果,表示从顶点0开始访问所有顶点到终点n-1的最短路径
        System.out.println(f[(1 << n) - 1][n - 1]);
    }
}

详细题解请移步:最短Hamilton路径

7. 总结与扩展

记忆化搜索结合状态压缩是一种极为高效的优化技术,特别是在解决具有重叠子问题和复杂状态空间的问题时,能够显著提升算法的时间和空间效率。在实际应用中,合理地设计状态表示并结合位运算,可以进一步优化问题的求解过程。

相关推荐
大数据编程之光10 分钟前
Flink Standalone集群模式安装部署全攻略
java·大数据·开发语言·面试·flink
爪哇学长24 分钟前
双指针算法详解:原理、应用场景及代码示例
java·数据结构·算法
Dola_Pan28 分钟前
C语言:数组转换指针的时机
c语言·开发语言·算法
ExiFengs28 分钟前
实际项目Java1.8流处理, Optional常见用法
java·开发语言·spring
paj12345678929 分钟前
JDK1.8新增特性
java·开发语言
繁依Fanyi40 分钟前
简易安卓句分器实现
java·服务器·开发语言·算法·eclipse
慧都小妮子1 小时前
Spire.PDF for .NET【页面设置】演示:打开 PDF 时自动显示书签或缩略图
java·pdf·.net
m51271 小时前
LinuxC语言
java·服务器·前端
烦躁的大鼻嘎1 小时前
模拟算法实例讲解:从理论到实践的编程之旅
数据结构·c++·算法·leetcode
IU宝1 小时前
C/C++内存管理
java·c语言·c++