[数据集][目标检测]红外场景下车辆和行人检测数据集VOC+YOLO格式19069张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):19069

标注数量(xml文件个数):19069

标注数量(txt文件个数):19069

标注类别数:4

标注类别名称:["person","car","cat","dog"]

每个类别标注的框数:

person 框数 = 46693

car 框数 = 7851

cat 框数 = 572

dog 框数 = 2282

总框数:57398

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:暂无

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图片预览:

标注例子:

下载地址:https://download.csdn.net/download/FL1623863129/89662960

相关推荐
舒一笑1 小时前
智能体革命:企业如何构建自主决策的AI代理?
人工智能
丁先生qaq2 小时前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
红衣小蛇妖2 小时前
神经网络-Day45
人工智能·深度学习·神经网络
JoannaJuanCV2 小时前
BEV和OCC学习-5:数据预处理流程
深度学习·目标检测·3d·occ·bev
KKKlucifer2 小时前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor3 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
浠寒AI4 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154465 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me075 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao5 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测